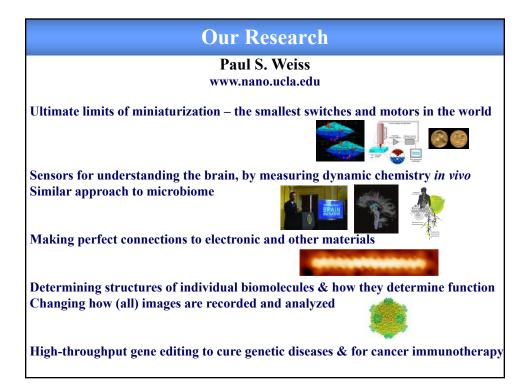
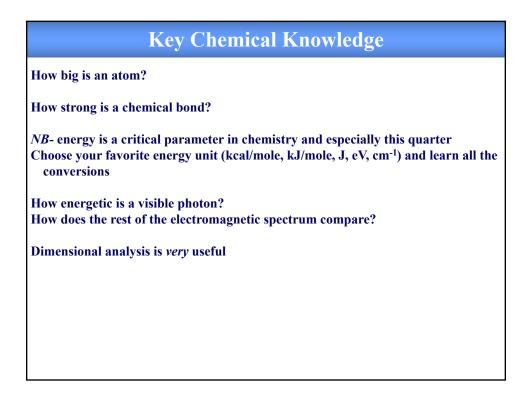
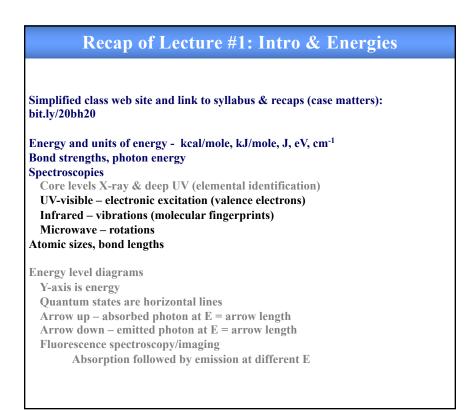

Chem 20BH: Highlights from the Syllabus, cont.
Grading:
Midterms 30% (2 × 15% each)
Project 15% (10% poster + 5% paper)
Final 20% (format depends on the number of students)
Homework 30% (10% creative problems + 10% graded problems
+ 10% literature assignments, top 5 of 6)
Participation 5%
Exams:
No notes or calculators or phones or devices
You will receive a periodic table and list of formulas and constants
Recording lectures is not allowed without my explicit permission, and under no
circumstances can be posted online or otherwise transmitted
Tentative office hours (depending on your availability):
Tuesday 2 ³⁰ -3 ³⁰ PM & Thursday 1 ²⁰ -2 ³⁰ PM, 3041 Young Hall
(we may move if crowded)
Often on iChat, WeChat as psweiss
TA office hours will be on the web site
READ THE UPDATED SYLLABUS BEFORE AND AFTER EACH CLASS


Chem 20BH: Foreign Language Immersion Opportunity Energy


Treat chemistry (and science and engineering) as a foreign language We are going to jump right in

Energy is to chemistry like money is to economics & everyday life, so choose your favorite energy unit (like a currency) eV, kJ/mole, kcal/mole, cm⁻¹ Know the conversions to the others Also, know conversions to J and to K (absolute temperature)

This course is going to be tailored to your interests We will explore the science together


Proposed Exam and Poster Evenings Fixed Final Exam

Midterm 1 Wednesday 29 January (6-8 PM vs in class)

Poster Presentations Saturday 22 February (2-6 PM)

Midterm 2 Wednesday 26 February (6-8 PM vs in class)

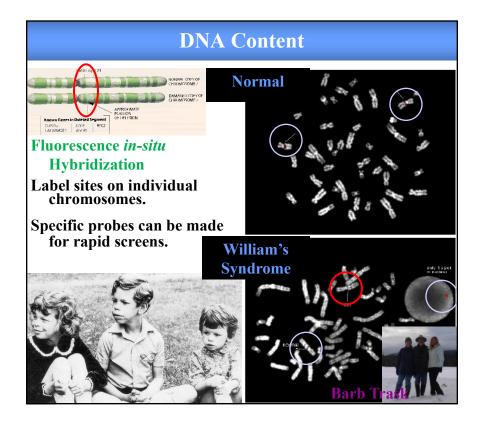
Final Exam Tuesday 18 March, 8-11 AM

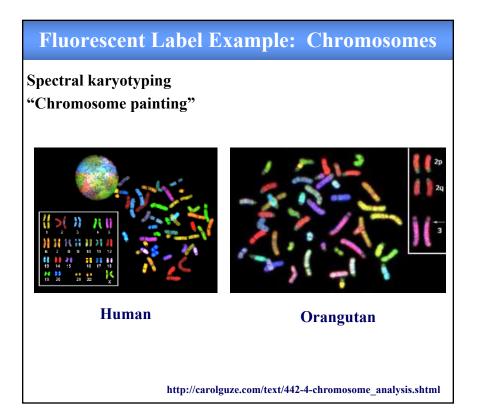
Single-Molecule Measurements in Chemistry and Biology

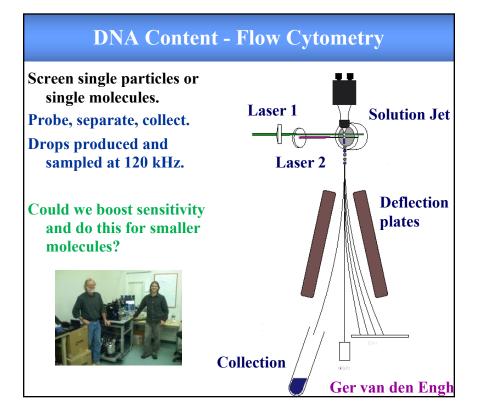
Key measurements of heterogeneity and diversity have become possible due to our recent advances across disciplines in sensitivity and resolution. Finding single molecules is straightforward

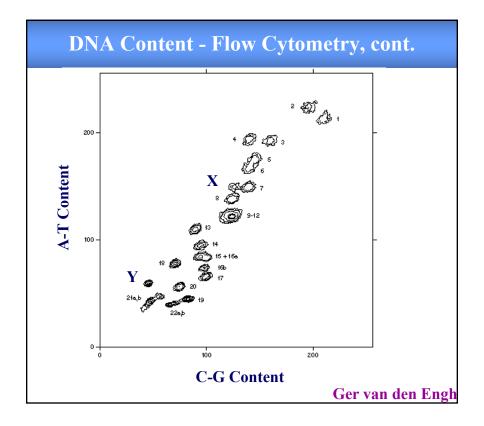
Understanding can be hard

Accumulating statistics can be hard

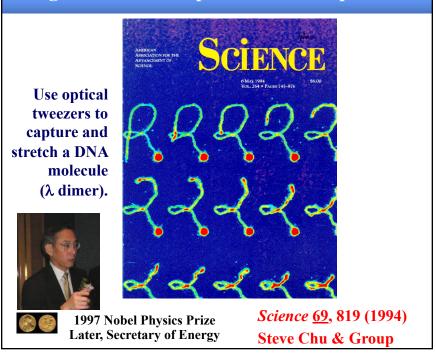

We will discuss

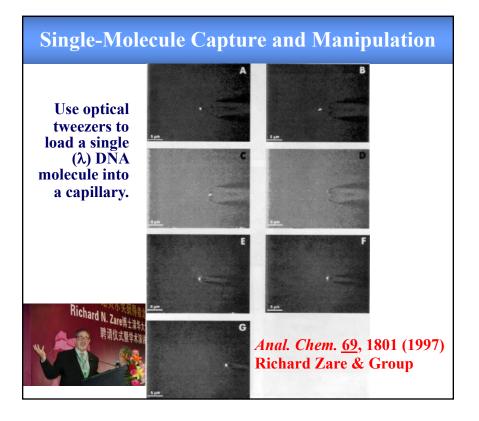

Molecular devices Single-molecule control Imaging parts of molecules

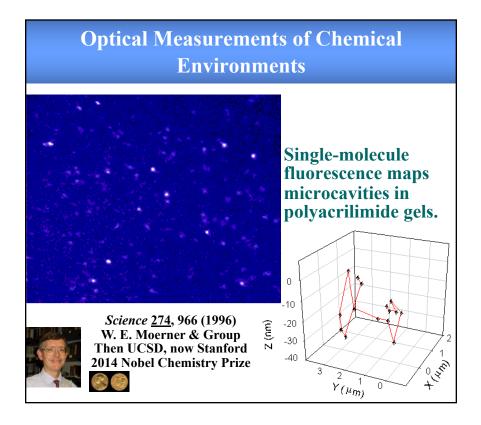

Ideas on parallel single-molecule measurements

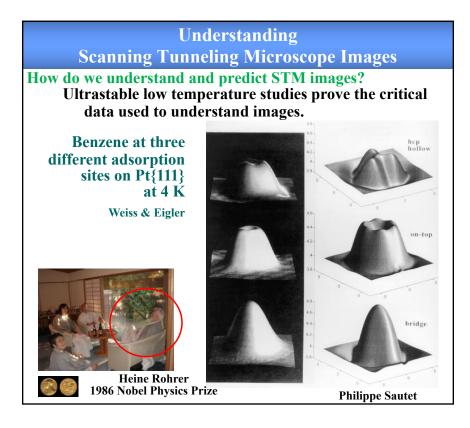

These topics will introduce key techniques and experiments that we will use many times again.

Single biomolecules have been measured and manipulated for many years.









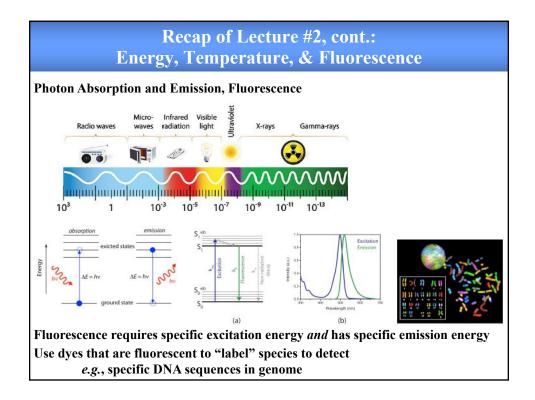
Single-Molecule Capture and Manipulation

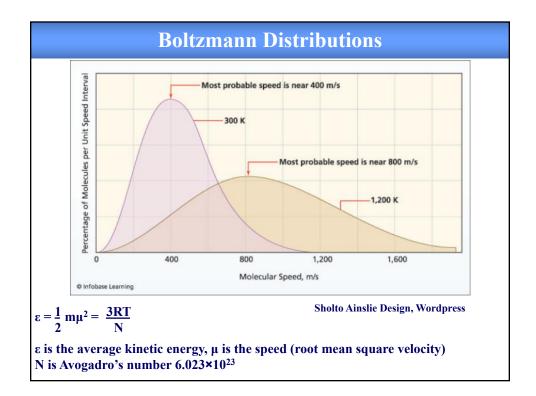
Recap of Lecture #2: Energies & Measurements

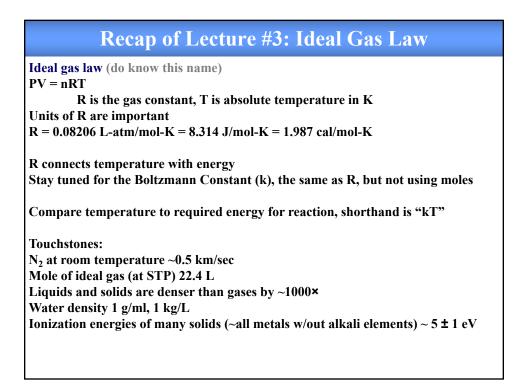
Spectroscopies

Core levels X-ray & deep UV (elemental identification)

UV-visible – electronic excitation (valence electrons) Infrared – vibrations (molecular fingerprints)


Microwave – rotations

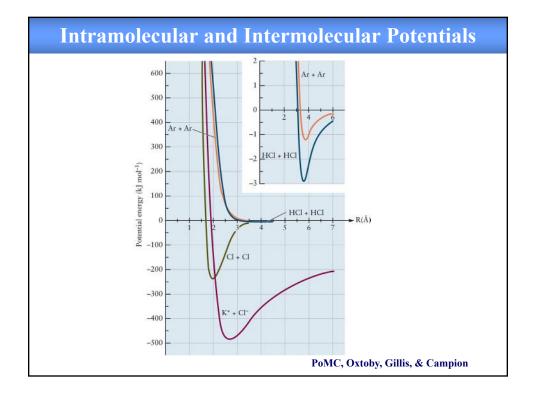

Atomic sizes, bond lengths

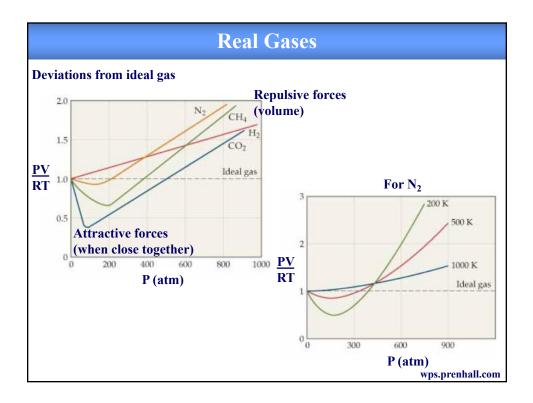

Energy level diagrams Y-axis is energy Quantum states are horizontal lines Arrow up – absorbed photon at E = arrow length Arrow down – emitted photon at E = arrow length Fluorescence spectroscopy/imaging Absorption followed by emission at different E

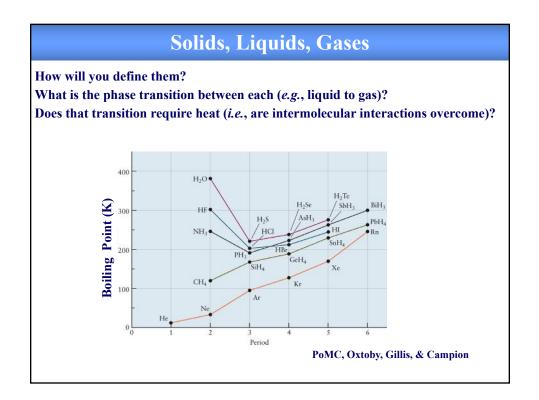
Dimensional analysis is very useful

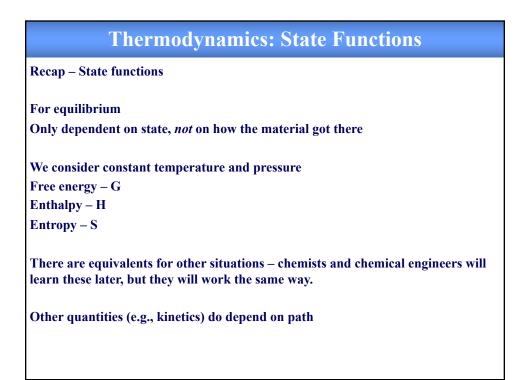
Use fluorescent labels and dyes Flow cytometry, fluorescence *in-situ* hybridization (FISH) Single-molecule measurements

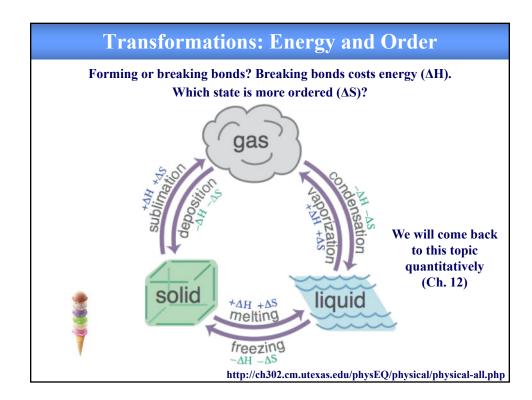
Recap of Lecture #4: Ideal & Non-Ideal Gases

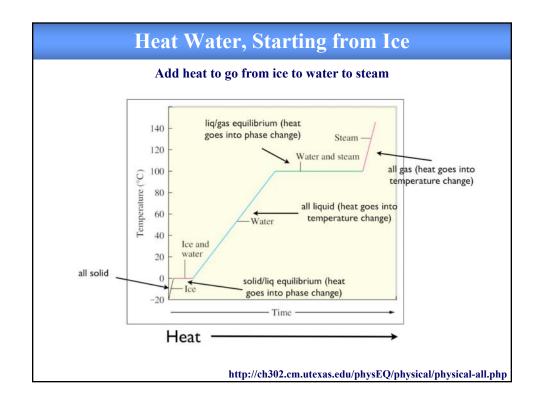

Real atoms and molecules interact

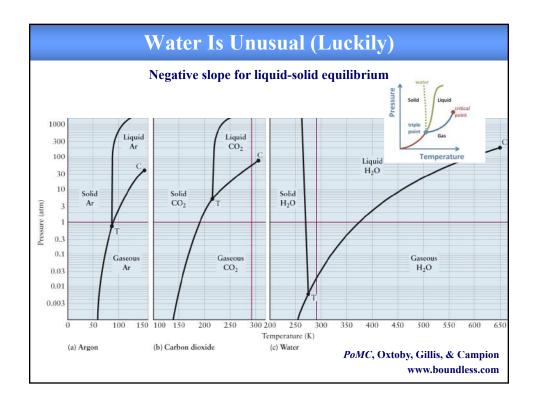

Know energy ranges of intramolecular and intermolecular interactions Boiling point gives a crude measure of intermolecular (or interatomic) interaction strength

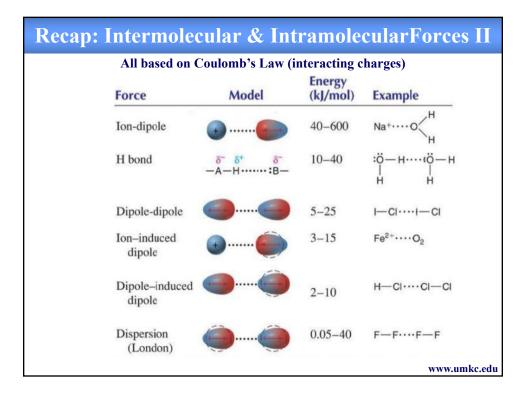

Molecular, interatomic, and intermolecular potentials Repulsive wall is steep on close approach Depth of potential well is (~) bond strength Position of potential well is bond length

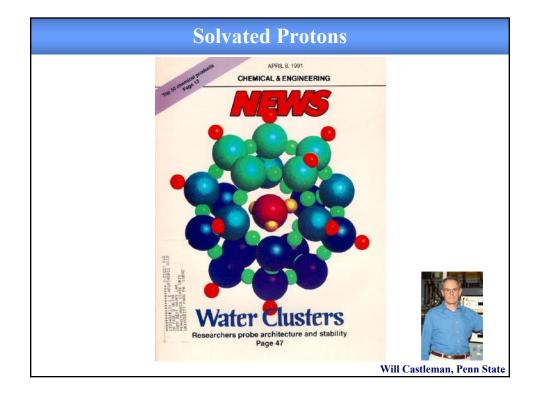

State Functions For equilibrium Only dependent on state, not on how the material got there G, H, S

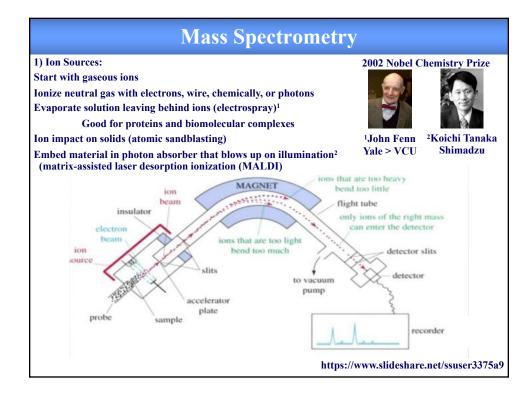

Mass Spectrometry – chemical identification Make or evaporate ions Measure parent mass as well as the masses of fragments (daughter masses) Can fragment multiple times to determine connectivities (*e.g.*, functionalization of proteins)

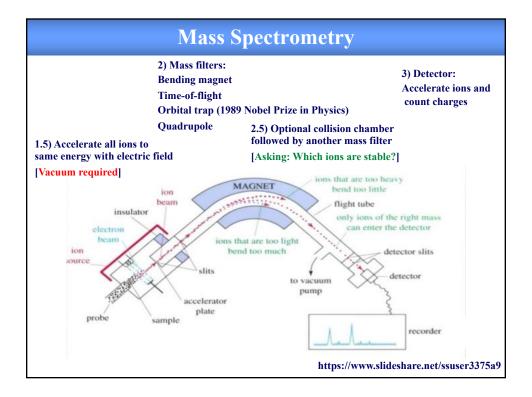


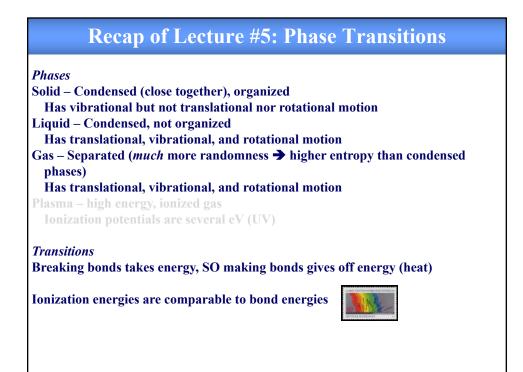











Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding Ionic		Cation-anion	400-4000	NaCl
Covalent		Nuclei-shared e pair	150-1100	н—н
Metallic	000	Cations-delocalized electrons	75-1000	Fe

Chemical Identification
<i>Elemental identification</i> Core level spectroscopies (<i>e.g.</i> , X-ray photoemission and X-ray fluorescence) <i>Chemical identification</i> Vibrational spectroscopy (infrared absorption, Raman, other) Mass spectrometry (more today) <i>Bond lengths</i> X-ray <u>diffraction</u>
Rotational spectroscopy (microwave) – <i>only</i> for small molecules in the gas phase
Energies
Know photon energies: X-ray, UV, visible, infrared, microwave
Know bond energies. Know conversions between various units: kJ/mole, kcal/mole, eV, cm ⁻¹ (for light), K, Hz (for light), J (,cal)

Acids
Sour taste:
Lemon Juice - Citric acid
Vinegar - Acetic Acid
Dissolve active metals, usually liberating H ₂
Corrosive - dissolve compounds that are otherwise hard to dissolve.
Examples:
Precious metals such as gold (Au) dissolve in HNO ₃ + HCl (aqua regia)
Hard water deposits dissolve in vinegar
(Turn litmus paper RED)

Bases
Bitter taste
Dissolve oil and grease Drano and lye soap contain NaOH
Slippery to the touch - dissolve hair and skin
React with many metal ions to form precipitates. <i>Example</i> :
Hard water (=Ca ²⁺ , Mg ²⁺) + soap White precipitate (<i>ppt</i>) (bathtub rings and scale – try a weak acid like distilled vinegar)
(Turns litmus paper BLUE)

ACID

Any compound that releases H⁺ when dissolved in H₂O

Example:

$$\operatorname{HCl}(g) \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$$

BASE Any compound that releases OH⁻ when dissolved in H₂O

Example:

$$KOH(s) \xrightarrow{H_2O} K^+(aq) + OH^-(aq)$$

ACID

Any compound capable of donating a $\mathrm{H}^{\!+}$ ion

Example:

$$\operatorname{HCl}(g) \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$$

 $\begin{array}{l} \textbf{BASE} \\ \textbf{Any compound capable of accepting a H^{+} ion} \end{array}$

Example:

$$\mathrm{NH}_{3}(g) + \mathrm{H}_{2}\mathrm{O}(l) \xrightarrow{\mathrm{H}_{2}\mathrm{O}} \mathrm{NH}_{4}^{+}(aq) + \mathrm{OH}^{-}(aq)$$

Conjugate Acid-Base Pairs

Differ only by the presence or absence of a proton (H⁺)

Conjugate Acid = Conjugate Base + H⁺

Examples: H₃O⁺ / H₂O H₂O / OH⁻

HCl/Cŀ

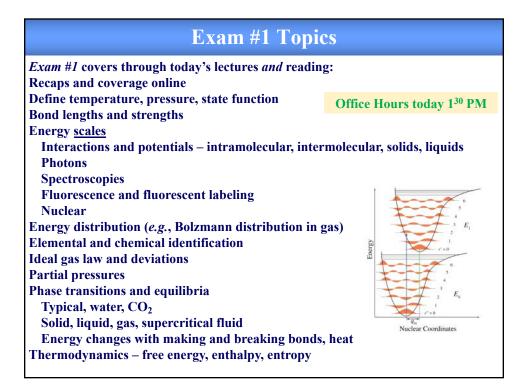
 $\mathrm{NH_4^+}/\mathrm{NH_3}(g)$

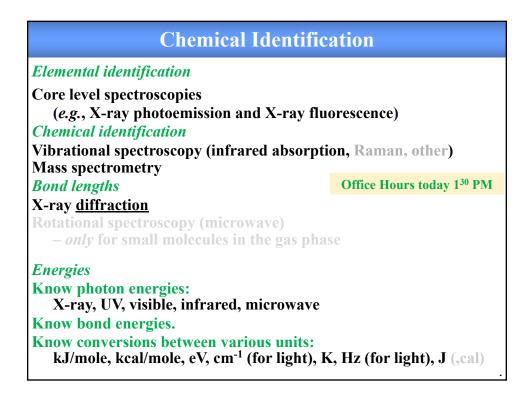
Note:

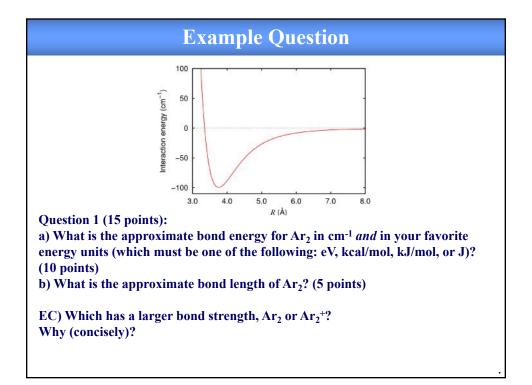
The *stronger* the acid, the weaker its conjugate base. The *weaker* the acid, the stronger its conjugate base. We will make this quantitative

Acids and Bases	
Acid/Base Definitions	
Arrhenius:	
Acid - Proton donor	
Base - Hydroxide donor	
Bronsted-Lowry:	
Acid - Proton donor	
Base - Proton acceptor	
Lewis:	
Acid - Electron pair acceptor	
Base - Electron pair donor	
<i>Solvation shells</i> Solvent orients around central ion (hydronium as shown)	

Acids and Bases

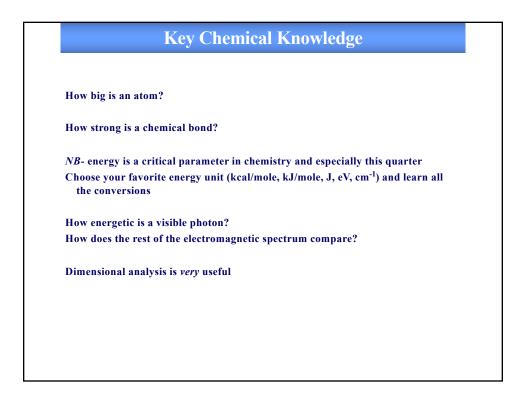

Equilibria Strong acids and bases dissociate completely. Know the strong acids & bases.


 $K_a K_b = [H^+][OH^-] = K_w = 10^{-14}$


 $\mathbf{pX} = -\mathbf{log}_{10}\mathbf{X}$

 $pK_a + pK_b = 14 = pH + pOH$

Balancing Reactions Same number of atoms of each element on each side of reaction* Same total charge on each side In electrochemistry – we will also cover half-cell reactions. In reduction, electrons will be a reactant (on left) In oxidation, electrons will be a product (on right) Total reaction will eliminate electrons from both sides. Losing electrons at Anode is Oxidation & Gaining electrons is Reduction at the Cathode LAnOx & GRedCat *Except in nuclear reactions



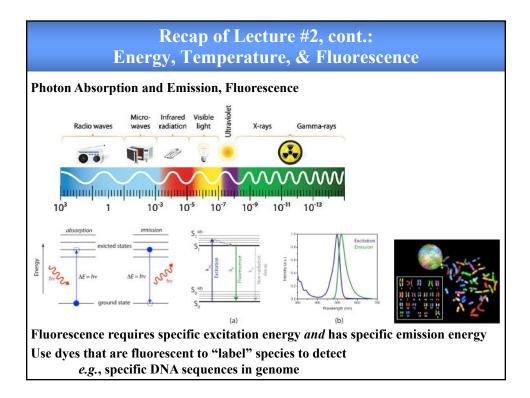
ignafure	ST B ST Control of St Control	No. No. <th></th>	
cm ⁻¹ L339 81 x 10 ⁻¹ D002 539 11 D011 592 7 L428 79 L285 30 bootband D043 581 x M2 757 D d 31420 501 278 [5 55 x 10] boltband D010 164 10 B3 595 D 259401 D 203 274 1 68 7 07	III III 917 5.418.04 ± 10.718 927 5.999.95 ± 10.728 1.049.574 ± 10.727 5.06.07 ± 10.715 7 5.06.07 ± 10.715 927 5.06.64 ± 10.715 5.05.06 ± 4.10.715 5.070 ± 10.715	Arc and the second seco	

Recap of Lecture #1: Intro & Energies
Energy and units of energy - kcal/mole, kJ/mole, J, eV, cm ⁻¹ Bond strengths, photon energy Spectroscopies Core levels X-ray & deep UV (elemental identification) UV-visible – electronic excitation (valence electrons) Infrared – vibrations (molecular fingerprints) Microwave – rotations
Atomic sizes, bond lengths
Energy level diagrams Y-axis is energy Quantum states are horizontal lines Arrow up – absorbed photon at E = arrow length Arrow down – emitted photon at E = arrow length Fluorescence spectroscopy/imaging Absorption followed by emission at different E

Single-Molecule Measurements in Chemistry and Biology

Key measurements of heterogeneity and diversity have become possible due to our recent advances across disciplines in sensitivity and resolution.

Finding single molecules is straightforward Understanding can be hard Accumulating statistics can be hard


We will discuss

Molecular devices Single-molecule control Imaging parts of molecules Ideas on parallel single-molecule measurements

These topics will introduce key techniques and experiments that we will use many times again.

Single biomolecules have been measured and manipulated for many years.

Recap of Lecture #2: Energies & Measurements
Spectroscopies
Core levels X-ray & deep UV (elemental identification)
UV-visible – electronic excitation (valence electrons)
Infrared – vibrations (molecular fingerprints)
Microwave – rotations
Atomic sizes, bond lengths
Energy level diagrams
Y-axis is energy
Quantum states are horizontal lines
Arrow up – absorbed photon at E = arrow length
Arrow down – emitted photon at E = arrow length
Fluorescence spectroscopy/imaging
Absorption followed by emission at different E
Dimensional analysis is very useful
Use fluorescent labels and dyes
Flow cytometry, fluorescence in-situ hybridization (FISH)
single-molecule measurements

Recap of Lecture #2: Energies & Measurements
Spectroscopies Core levels X-ray & deep UV (elemental identification)
UV-visible – electronic excitation (valence electrons)
Infrared – vibrations (molecular fingerprints)
Microwave – rotations
Atomic sizes, bond lengths
Energy level diagrams
Y-axis is energy
Quantum states are horizontal lines
Arrow up – absorbed photon at E = arrow length
Arrow down – emitted photon at E = arrow length
Fluorescence spectroscopy/imaging
Absorption followed by emission at different E
Dimensional analysis is very useful
Use fluorescent labels and dyes
Flow cytometry, fluorescence <i>in-situ</i> hybridization (FISH) Single-molecule measurements

Recap of Lecture #2: Energy, Temperature, & Fluorescence

Energy scales
Reaction free energy changes and interaction strengths vs. photon energies
State functions – thermodynamic energies that do not depend on reaction path (more to come on these)
Measurements & spectroscopies
Energies and wavelengths

e.g., for diffraction, we match photon wavelength to bond length choose X-rays

Infrared – vibrational transitions →

Useful for chemical identification of functional groups (e.g., -CH₃)

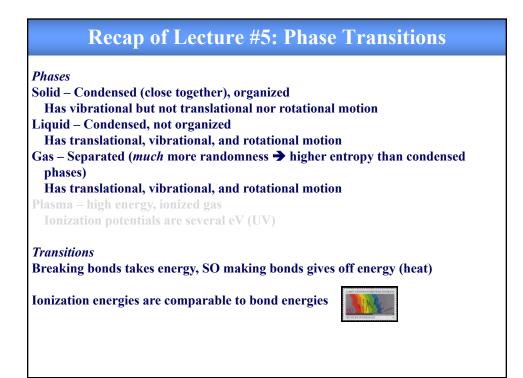
Visible & near UV – electronic transitions (not generally used for chemical ID) X-ray – core level electronic excitations →

Useful for identifying elements, Li and beyond

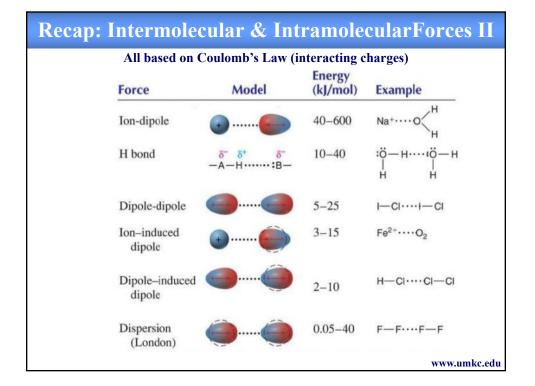
Touchstones:

 N_2 at room temperature ~0.5 km/sec

Mole of ideal gas (at STP) 22.4 L Liquids and solids are denser than gases by ~1000×


Recap of Lecture #4: Ideal & Non-Ideal Gases

Real atoms and molecules interact Know energy ranges of intramolecular and intermolecular interactions Boiling point gives a crude measure of intermolecular (or interatomic) interaction strength


Molecular, interatomic, and intermolecular potentials Repulsive wall is steep on close approach Depth of potential well is (~) bond strength Position of potential well is bond length

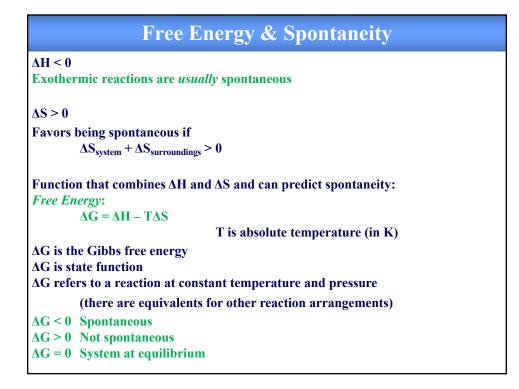
State Functions For equilibrium Only dependent on state, not on how the material got there G, H, S

Mass Spectrometry – chemical identification Make or evaporate ions Measure parent mass as well as the masses of fragments (daughter masses) Can fragment multiple times to determine connectivities (*e.g.*, functionalization of proteins)

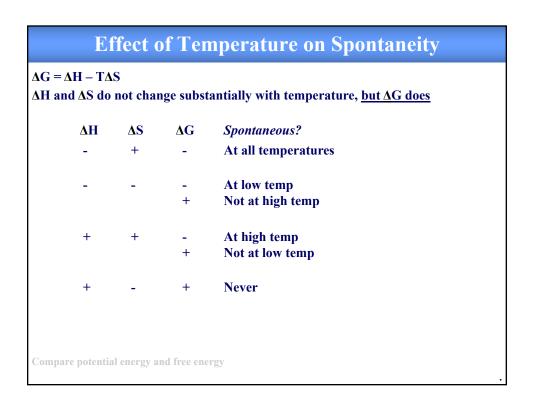
	in base	l on Coulomb's Law (in	
Forc	e M	Basis of odel Attraction	Energy (kJ/mol) Example
Bond	ding		
Ionic	8	Cation-anion	400-4000 NaCl
		Nuclei-shared e pair	150-1100 H—H
Meta	Ilic 🧭	Cations-delocal electrons	ized 75-1000 Fe

Periodic Trends Reminder
<i>Periodic Trends</i> Know which direction across the periodic table determines property. Based on filling electron shells
Ionization Energy Ionization Energy Ionization Energy Ionization Energy Ionization States (or to a lesser extent – has filled or half-filled subshells) Same rules for higher oxidation states (e.g., Mg ⁺²)
<i>Electron Affinities</i> (Negative values for species with stable anions) Related to <i>electronegativity</i> – many ways to define this. Determine dipoles within molecules.
Atomic & Ionic Sizes 🕊 Size decreases with more positive oxidation state for isoelectronic atoms/ions.

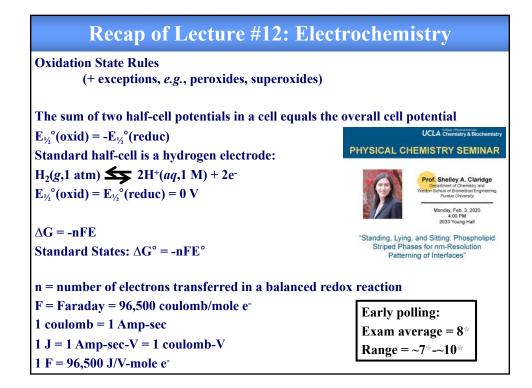
Recap of Lecture #6 & 6.5: Interactions


Interactions and Interaction Strengths

Stronger Interactions Ionic bonding Charges and separation Covalent bonding Metallic bonding Delocalized electrons Comparable cohesive energies (bond strengths)


Weaker Interactions Ion-dipole Hydrogen bonding Dipole-dipole Ion – induced dipole Dipole – induced dipole Dispersion (fluctuating dipole – induced dipole)

Office Hours today 2³⁰ and Friday afternoon 1³⁰ – *NOT* Thursday and Tuesday


Recap of Lecture #6 & 6.5, cont.: Acids & Bases
Acid/Base Definitions Arrhenius: Acid - Proton donor Base - Hydroxide donor Bronsted-Lowry: Acid - Proton donor Base - Proton acceptor Lewis: Acid - Electron pair acceptor Base - Electron pair donor
Conjugate Acid = Conjugate Base + H ⁺ The <i>stronger</i> the acid, the weaker its conjugate base. The <i>weaker</i> the acid, the stronger its conjugate base. $K_a K_b = [H^+][OH^-] = K_w = 10^{-14}$ $pK_a + pK_b = 14 = pH + pOH$ <i>Solvation shells</i> Solvent orients around central ion

Laws of Thermodynamics
1 st Law:
The total energy in the universe is constant
$\Delta E_{universe} = 0$
$\Delta E_{universe} = \Delta E_{system} + \Delta E_{surroundings}$
$\Delta \mathbf{E}_{\text{system}} = -\Delta \mathbf{E}_{\text{surroundings}}$
2 nd Law:
The total entropy in the universe is increasing
$\Delta S_{universe} > 0$
$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$
3 rd Law:
The entropy of every pure substance at 0 K (absolute zero temperature) is zero
S=0 at 0 K
· · ·

Assigning Formal Oxidation States 1. Oxygen is almost always -2. 2. Halogens (F, Cl, Br, I) always are -1, *except* when Cl, Br, I are bound to oxygen or fluorine, in which case they have positive oxidation numbers. 3. Hydrogen is always +1, *except* when bound to group I, II, or III metals, in which case it is -1. 4. Determine the oxidation states of other elements in a compound by difference. Most elements tend to lose or gain enough electrons to achieve a filled shell.

Standard Potential for an Electrochemical Cell

The *standard potential* for an electrochemical cell is the potential (voltage) generated when reactants and products of a redox reaction are in their standard states.

Standard States: T = 25 °C Gases, p = 1 atm [Solutions] = 1 M

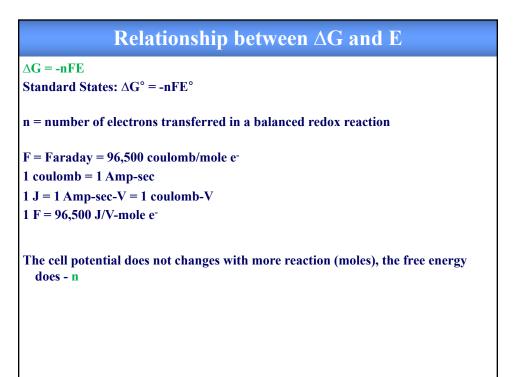
Half-Cell Potential

The half-cell potential is the potential associated with the half-reaction

Rules for half-cell potentials:

1. The sum of two half-cell potentials in a cell equals the overall cell potential:

 $E_{cell}^{\circ} = E_{\frac{1}{2}}^{\circ}(oxid) + E_{\frac{1}{2}}^{\circ}(reduc)$


2. For any half-reaction:

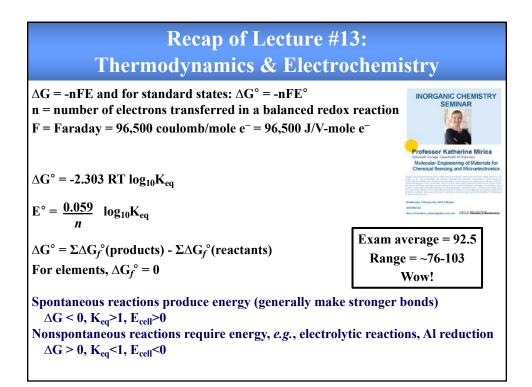
 $E_{\frac{1}{2}}^{\circ}(oxid) = -E_{\frac{1}{2}}^{\circ}(reduc)$

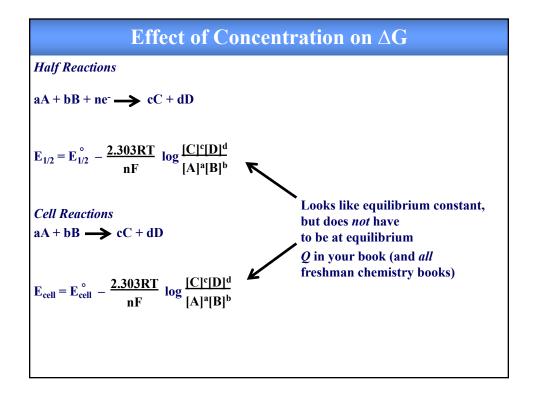
3. Standard half-cell is a hydrogen electrode:

 $H_2(g,1 \text{ atm}) \implies 2H^+(aq,1 M) + 2e^-$

 $\mathbf{E}_{\frac{1}{2}}^{\circ}(\mathbf{oxid}) = \mathbf{E}_{\frac{1}{2}}^{\circ}(\mathbf{reduc}) = \mathbf{0} \mathbf{V}$

$\Delta \mathbf{G}$ and \mathbf{E} , cont.
$\Delta G^{\circ} = -2.303 \text{ RT } \log K_{eq}$ $\Delta G^{\circ} = -nFE^{\circ}$
$\mathbf{E}^{\circ} = \frac{2.303RTlogK_{eq}}{nF}$
R = 8.314 J/K-mole F = 96,500 J/V-mole e ⁻
At 25 °C = 298 K:
$E^{\circ} = \frac{(2.303)(8.314 \text{ J/K-mole})(298 \text{ K}) \log K_{eq}}{n(96,500 \text{ J/V-mole }e^{-})}$
$\mathbf{E}^{\circ} = \frac{0.059}{n} \log K_{eq}$


Effect of Concentration


 Half Reactions

$$aA + bB + ne^{-} \rightarrow cC + dD$$
 $E_{1/2} = E_{1/2}^{\circ} - \frac{2.303RT}{nF} \log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

 Cell Reactions

 $aA + bB \rightarrow cC + dD$
 $E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{nF} \log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

Recap of Lecture #14: Electrochemistry and Concentrations

Le Chatelier 's Principle

Disturb a system from equilibrium and it will move to restore that equilibrium \rightarrow One way to drive a reaction is to remove product Quantify with concentration dependence of ΔG and E.

Batteries

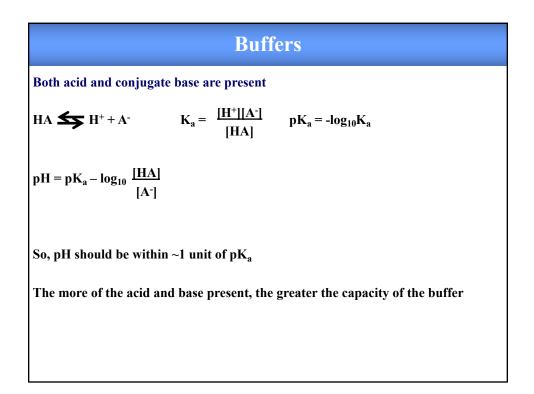
Lead acid battery Dry cell, alkaline cell Rechargeable Ni-Cd battery To get higher voltages, stack up cells in series (*e.g.*, car battery 6 × 2 V = 12 V)

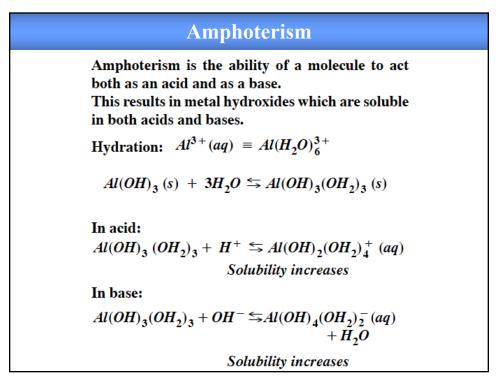
Electrolysis

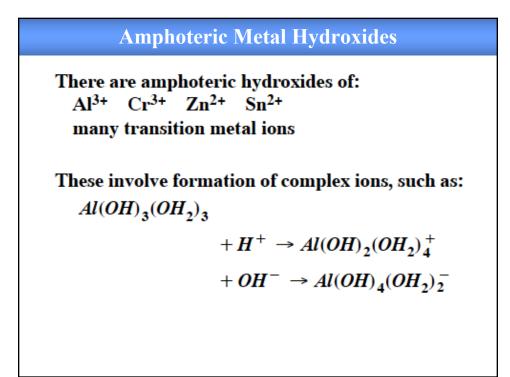
Driving non-spontaneous reactions by applying electrical energy The least unfavorable potential reaction goes first (there can be overlap) Overpotentials and concentrated reactants are used Quantify the amount of reaction -n, F, and number of moles

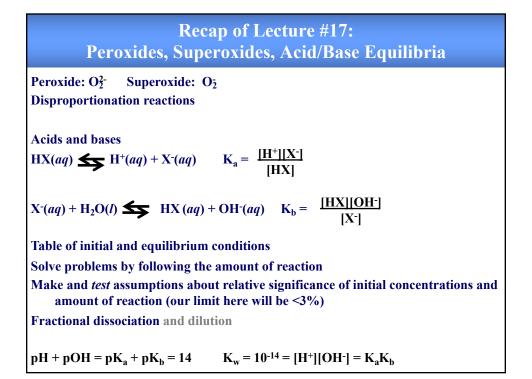
Weak Acids and Bases
Strong acids
HCl, HBr, HI, HNO ₃ , HClO ₄ , H ₂ SO ₄
These dissociate completely to form $H^+ + X^-$
Other (weak) acids:
Dissociate partially to H ⁺ + X ⁻
Rank by K_a – the highest K_a is the strongest acid.
Strong bases:
LiOH, NaOH, KOH, RbOH, CsOH
$Ca(OH)_2$, $Sr(OH)_2$, $Ba(OH)_2$
These dissociate completely to form OH ⁻ + M ⁺
Other (weak) bases:
Rank by K_{b} – the highest K_{b} is the strongest base
The lowest K _a for the conjugate acid is the strongest base

Oxyacids				
The (labile) prot	on is attached	to oxygen		
The higher the o	xidation state	of the central	atom, the s	tronger the acid
	Hypochlorous	Chlorous	Chloric	Perchloric
	H—Ö—ĈI:	Chlorous H—Ö—Öl—Ö	ı:U: H—Ö—Cl→Ö:	H-Ö-CI-Ö
	K_a =3.0 $ imes$ 10 ⁻⁸	$K_a = 1.1 \times 10^{-2}$	Strong acid	Strong acid
		Increasing ac	id strength	
HX \$ H ⁺ + A	- K _a =	- <u>[H⁺][A⁻]</u> [HA]	$\mathbf{pK}_{\mathbf{a}} = -\mathbf{log}$	₁₀ K _a
For the same oxidation state, the more electronegative the central atom, the stronger the acid				
HOCl > H				
3.0×10^{-8} 2.5×10^{-9} 2.3×10^{-11}				
B + H ₂ O ≤ ↓ H	$B^+ + B^- K_b =$	<u>[HB+][OH-]</u> [B]	pK _b = -log	₁₀ K _b Chemistry: The Central Science


Equilibria in Acid/Base Dissociation


ACIDS AND BASES


$$HX \leftrightarrows H^+ + X^- \qquad K_a = \frac{[H^+] [X^-]}{[HX]}$$


$$X^{-} + H_2 O \leq HX + OH^{-}$$
$$K_b = \frac{[HX] [OH^{-}]}{[X^{-}]}$$


$$K_a K_b = [H^+] [OH^-] = K_w = 10^{-14}$$

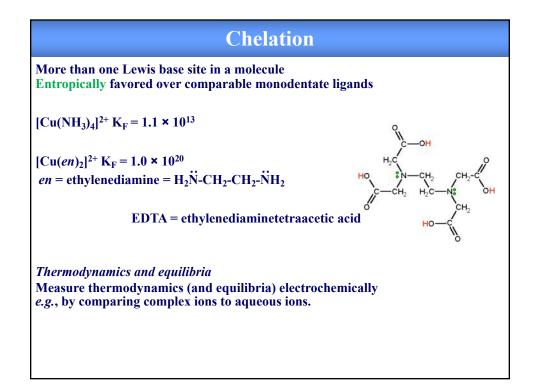
$$\begin{aligned} & \text{Metal Complex Stability} \\ & Cu(NH_3)_4^{2+} + 4H_2O \leftrightarrows Cu(OH_2)_4^{2+} + 4NH_3 \\ & Cu^{2+}(aq) = Cu(OH_2)_4^{2+} \\ & K = \frac{[Cu(OH_2)_4^{2+}][NH_3]^4}{[Cu(NH_3)_4^{2+}][H_2O]^4} \\ & & = \text{constant} \end{aligned}$$

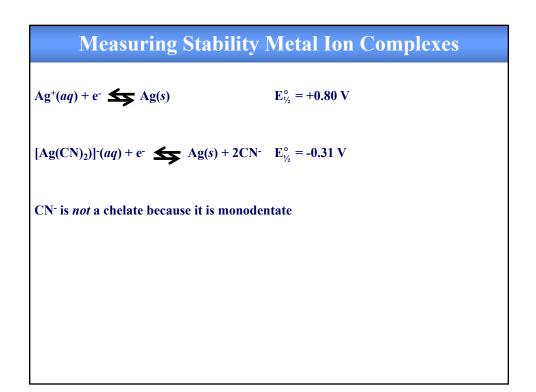
$$\begin{aligned} & \text{Dissociation} \quad K_D = \frac{[Cu^{2+}][NH_3]^4}{[Cu(NH_3)_4^{2+}]} = 2 \ge 10^{-13} \\ & Cu(OH_2)_4^{2+} + 4NH_3 \leftrightarrows Cu(NH_3)_4^{2+} + 4H_2O \\ & \text{Formation} \qquad K_F = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4} = 5 \ge 10^{12} \\ & K_D = \frac{1}{K_F} \end{aligned}$$

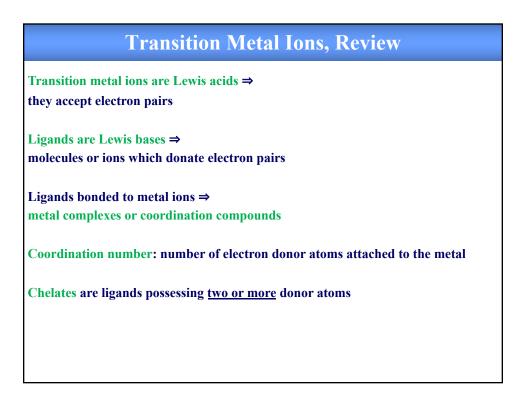
Metal Complexes
Coordination compounds
Lewis acid – Lewis base adducts
Important in enzymes, catalysis, metal/salt dissolution
Orbitals and oxidation state of central metal ion determine coordination.
Electronic excitation – absorption and emission
Lewis base ligands split electronic energies of metal ions – leading to color and spin
Lone pair electrons repel and stay farthest away (as compared to ligands)
Spin
High spin vs. low spin compounds
Compare crystal field splitting (Δ) to the spin pairing energy (P)
Spectrochemical series – relative ligand effect on Δ
Paramagnetic – having one of more unpaired spins
Colors
Complementary colors – if a color is absorbed, the absorbing material will appear as the complementary color
Red-green, orange-blue, yellow-violet
Other means of color: emission, interference

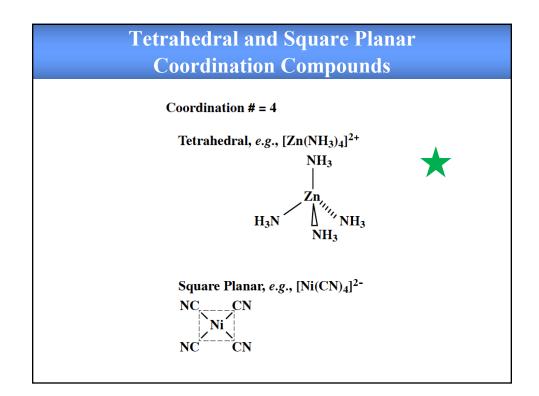
Metal Ion Buffer

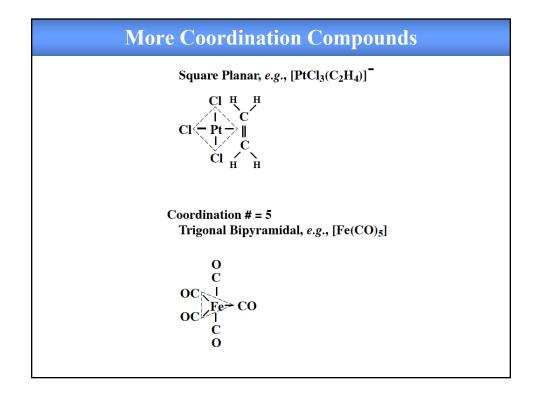
Can supply metal ions from "reservoir" of complex:

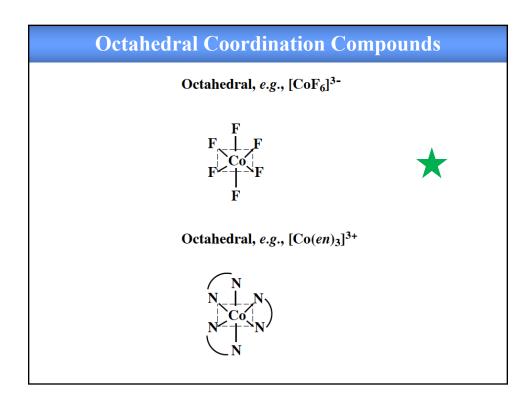

$$Cu(NH_3)_4^{2+} \leq Cu^{2+} + 4NH_3$$

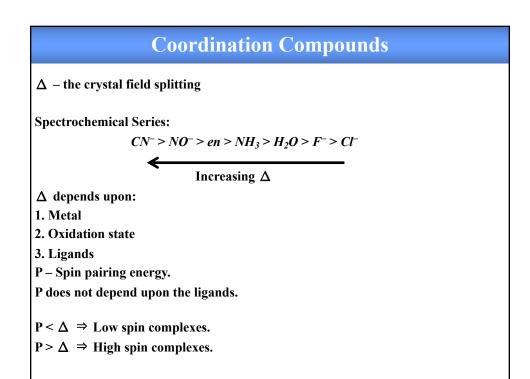

$$[Cu^{2+}] = \frac{[Cu(NH_3)_4^{2+}]}{K_F [NH_3]^4}$$

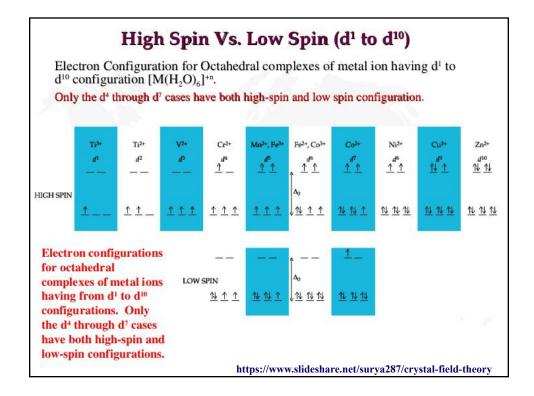

$$[Cu(NH_3)_4^{2+}] = 1 M$$

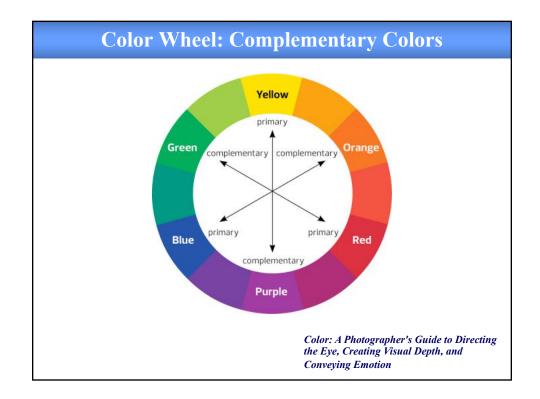

$$[NH_3] = 1 M$$
then:
$$[Cu^{2+}] = 3 \ge 10^{-13} M$$


Dissolve Insoluble Salts		
CuCO ₃ is a sparingly soluble salt	$K_{sp} = [Cu^{2+}][CO_3^{2-}] = 2.3 \times 10^{-10}$	
What if we add ammonia?	$K_{\rm F} = 1.1 \times 10^{13}$	
$CuCO_3(s) + 4NH_3(aq) \implies CO_3^{2-}(aq) + [Cu(NH_3)_4]^{2+}(aq)$		

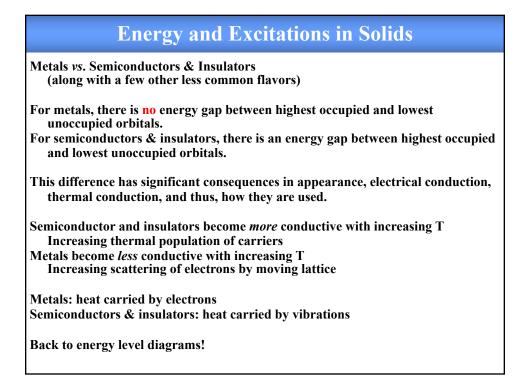


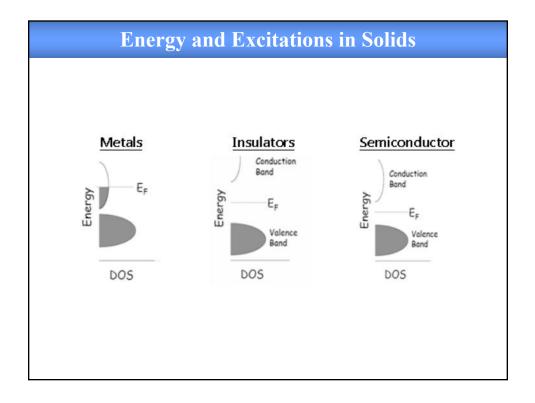

Chelate Reminder

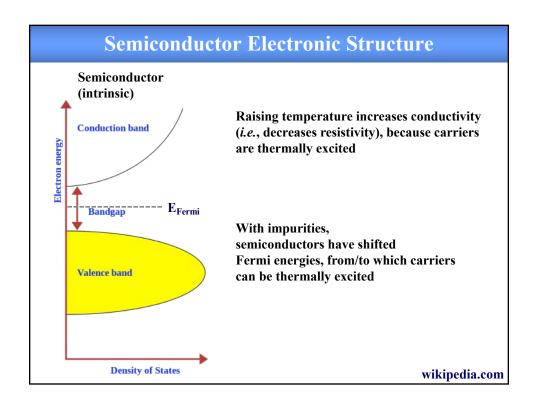

More than one Lewis base site in a molecule Entropically favored over comparable monodentate ligands

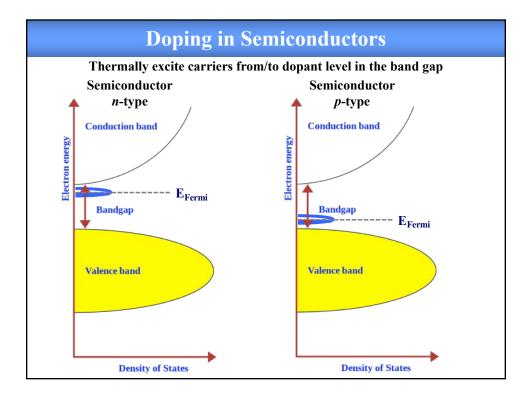

$$\begin{split} & [\text{Ni}(\text{NH}_{3})_{6}]^{2+} & \text{K}_{\text{F}} = 4 \times 10^{8} \\ & [\text{Ni}(en)_{3}]^{2+} & \text{K}_{\text{F}} = 2 \times 10^{18} \\ & en = \text{ethylenediamine} = \text{H}_{2}\text{N-CH}_{2}\text{-CH}_{2}\text{-NH}_{2} \end{split}$$

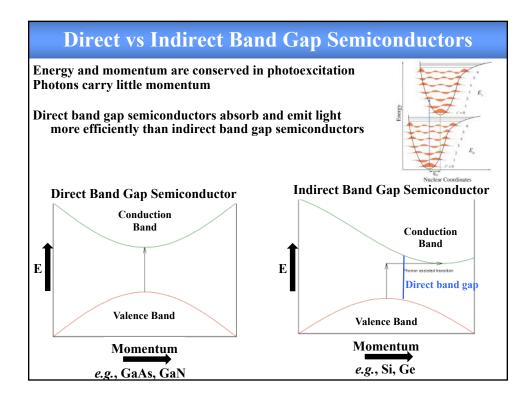
Cd²⁺ + 4CH₃NH₂ [Cd(CH₃NH₂)₄]²⁺ $\Delta G^{\circ} = -37.2 \text{ kJ/mol}, \Delta H^{\circ} = -57.3 \text{ kJ/mol}$ $\Delta S^{\circ} = -67.3 \text{ J/mol-K}$

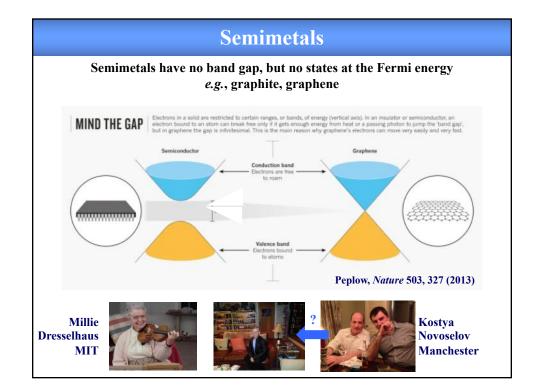

Cd²⁺ + 2*en* [Cd(*en* $)_2]^{2+}$ $\Delta G^{\circ} = -60.7 \text{ kJ/mol}, \Delta H^{\circ} = -56.5 \text{ kJ/mol}$ $\Delta S^{\circ} = +14.1 \text{ J/mol-K}$








Complex Ion	Wavelength of light absorbed	Color of Light Absorbed	Color of Complex
[CoF ₆] ³⁺	700 (nm)	Red	Green
[Co(C ₂ O ₄) ₃] ³⁺	600, 420	Yellow, violet	Dark green
[Co(H ₂ O) ₆] ³⁺	6 00, 400	Yellow, violet	Blue-green
[Co(NH ₃) ₆] ³⁺	475, 340	Blue, violet	Yellow-orange
[Co(en) ₃] ³⁺	470, 340	Blue, ultraviolet	Yellow-orange
[Co(CN) ₆] ³⁺	310	Ultraviolet	Pale Yellow



Energy and Excitations in Solids
Metals
No band gap - HOMO, LUMO are at the same energy
Electronic excitation is small vs. kT
High electrical and thermal conductivity
Conductivity <i>decreases</i> with increasing T, because of electron scattering
Semiconductors and Insulators
Have a band gap between valence (lower) band and conduction (upper) band – electronic excitation is >kT
This determines insulator vs. semiconductor
Direct band gap can be excited by photons (very little momentum)
Indirect band gap cannot be photoexcited efficiently
Electrons and "holes" can carry charge
Differentiate with magnetic field (Hall effect)
Energies of (dopant) states in the band gap determine conductivity and whether electrons or holes dominate current
Dopants in semiconductors
Elemental identity determines energy of dopant level
which then determines <i>p</i> - or <i>n</i> -type
Energy of dopant level <i>and</i> concentration determine conductivity of material more dopant atoms → higher conductivity
Do not form a "band" – serve as a source or sink for thermally excited electrons
Conductivity increases with increasing T, because of thermal excitation of carriers

Energy-Level Diagrams +

Metals, semiconductors, insulators, semi-metals, doped semiconductors, direct & indirect band gap semiconductors, semi-insulating semiconductors, superconductors

Boltzmann distribution (vs T), Fermi distribution

Photoexcitation, emission, fluorescence, photoionization, two-photon excitation, multiphoton excitation, Raman spectroscopy, stimulated emission, Jablonski diagram

X-ray photoelectron spectroscopy, X-ray fluorescence, Auger spectroscopy

Reaction coordinate, activation energy, catalysis

Conversion of energy units, temperature, frequency, photon wavelength, particle wavelength, magnetic field

Fingerprint spectroscopies and methods

Exam #2 Topics

Exam #2 covers through last week's lectures, readings, homework, and posters. Nearly the same data sheet as for exam #1, same periodic table No trick questions, no multiple choice. Be rested and ready to think.

Electrochemistry, equilibria, free energy, and how they are related Acid-base equilibria, polyprotic acids, buffers Amphoterism Laws of thermodynamics, state functions, free energy, enthalpy, and entropy

Mass spectrometry Spectroscopies, energy level diagrams Metals, semiconductors – *n*- & *p*-type, direct *vs* indirect band gaps Chemical and elemental fingerprinting methods

Quantifying reactions with electrochemistry Quantifying free energies and equilibrium constants with electrochemistry Batteries, corrosion, electrolysis

Complex ions, formation, dissociation, Lewis acid-Lewis base complexes Chelates

Periodic Trends Reminder

Periodic Trends Know which direction across the periodic table determines property. Based on filling electron shells

Ionization Energy 🐬

Low if resulting ion has filled shell rare gas configuration. (or to a lesser extent – has filled or half-filled subshells) Same rules for higher oxidation states (*e.g.*, Mg⁺²)

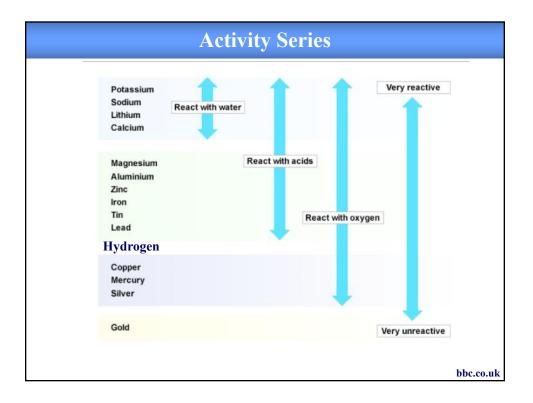
Electron Affinitites **(** (Negative values for species with stable anions) Related to *electronegativity* **7** – many ways to define this. Determine dipoles within molecules.

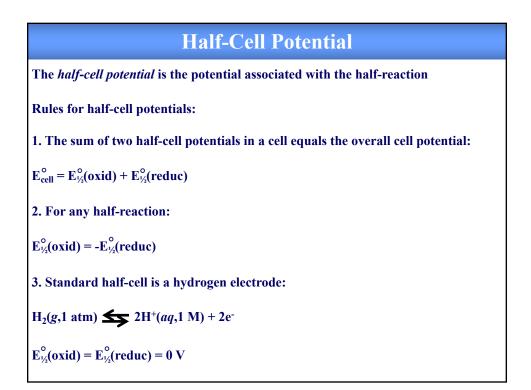
Atomic & Ionic Sizes 🕊 Size decreases with more positive oxidation state for isoelectronic atoms/ions.

Important (lifetime/career/GRE/MCAT scale)

Electrochemistry Electrochemistry relates electrical energy and chemical energy Oxidation-reduction reactions Spontaneous reactions Can extract electrical energy from these Examples: voltaic cells, batteries Positive cell potentials Non-spontaneous reactions Must put in electrical energy to make them go. Examples: electrolysis, electrolysis cells. Negative cell potentials Quantitate reactions

Assigning Formal Oxidation States


1. Oxygen is almost always -2.*


2. Halogens (F, Cl, Br, I) always are -1, *except* when Cl, Br, I are bound to oxygen or fluorine, in which case they have positive oxidation numbers.

3. Hydrogen is always +1, *except* when bound to group I, II, or III metals, in which case it is -1.

4. Determine the oxidation states of other elements in a compound by difference. Most elements tend to lose or gain enough electrons to achieve a filled shell.

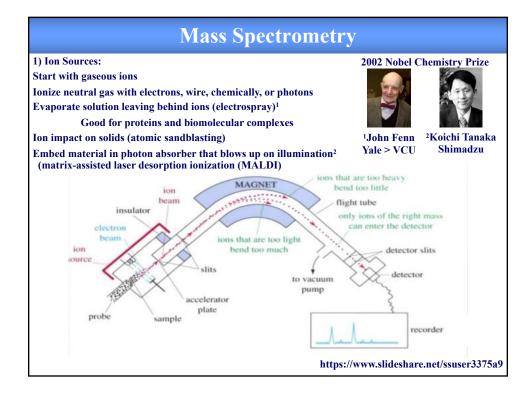
*Except for molecular oxygen, peroxides, superoxides

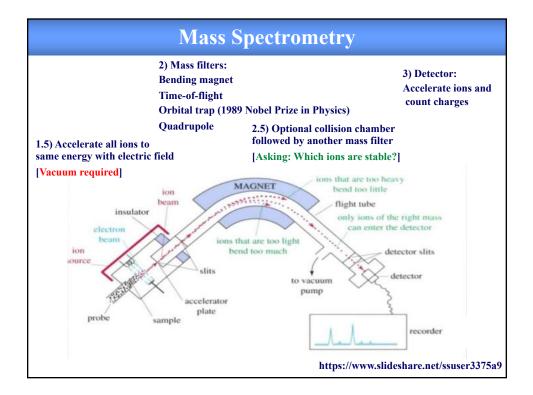
Chemical Identification

Elemental identification

Core level spectroscopies

(e.g., X-ray photoemission and X-ray fluorescence) Chemical identification


Vibrational spectroscopy (infrared absorption, Raman, other) Mass spectrometry *Bond lengths*


X-ray diffraction

Rotational spectroscopy (microwave) – only for small molecules in the gas phase

Energies

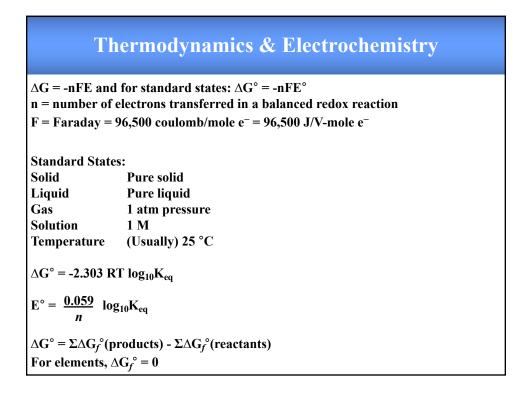
Know photon energies: X-ray, UV, visible, infrared, microwave Know bond energies. Know conversions between various units: kJ/mole, kcal/mole, eV, cm⁻¹ (for light), K, Hz (for light), J (,cal)

Laws of Thermodynamics
1 st Law:
The total energy in the universe is constant
$\Delta \mathbf{E}_{universe} = 0$
$\Delta \mathbf{E}_{universe} = \Delta \mathbf{E}_{system} + \Delta \mathbf{E}_{surroundings}$
$\Delta \mathbf{E}_{\text{system}} = -\Delta \mathbf{E}_{\text{surroundings}}$
2 nd Law:
The total entropy in the universe is increasing
$\Delta S_{universe} > 0$
$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$
2rd I
3 rd Law: The entropy of every pure substance at 0 K (absolute zero temperature) is zero
S=0 at 0 K

Thermodynamics

A spontaneous reaction is one that is capable of proceeding in the *forward direction* to a *substantial extent* under a *given set of conditions*.

NB- spontaneity has nothing to do with the rate at which a reaction will occur A spontaneous reaction may be fast or slow


Exothermicity usually determines spontaneity

Use your intuition

If you cannot intuit reaction as written, look at reverse

Free Energy & Spontaneity
$\Delta H < 0$
Exothermic reactions are <i>usually</i> spontaneous
$\Delta S > 0$
Favors being spontaneous if
$\Delta \mathbf{S}_{\text{system}}^{\circ} + \Delta \mathbf{S}_{\text{surroundings}} > 0$
Function that combines ΔH and ΔS and can predict spontaneity:
Free Energy:
$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$
T is absolute temperature (in K)
$\Delta \mathbf{G}$ is the Gibbs free energy
$\Delta \mathbf{G}$ is state function
ΔG refers to a reaction at constant temperature and pressure
(there are equivalents for other reaction arrangements)
$\Delta G < 0$ Spontaneous
$\Delta G > 0$ Not spontaneous
$\Delta G = 0$ System at equilibrium

 $\label{eq:constraint} \begin{array}{l} \label{eq:constraint} \textbf{Thermodynamics:} \\ \textbf{Laws of Thermodynamics} \\ 1 \ Energy is conserved \\ 2 \ Entropy increases \\ 3 \ At 0 \ K, \ S = 0 \ for a pure element \\ \Delta G = \Delta H - T \ \Delta S \\ \textbf{So, } \Delta H < 0, \ making stronger \ bonds, \ is favorable \\ \textbf{So, } \Delta S > 0, \ increased \ disorder, \ is favorable \\ \Delta H \ and \ \Delta S \ vary \ little \ with \ temperature. \ \Delta G \ does \ vary \ with \ T \ \ref{eq:constraint} \ effect \ of \ \Delta S \\ \textbf{Spontaneous reactions produce energy (generally make stronger \ bonds)} \\ \Delta G < 0, \ K_{eq} > 1, \ E_{cell} > 0 \\ \textbf{Nonspontaneous reactions require energy, e.g., electrolytic reactions, \ Al \ reduction \ \Delta G > 0, \ K_{eq} < 1, \ E_{cell} < 0 \end{array}$

Thermodynamics, Electrochemistry, and Concentrations

Le Chatelier 's Principle

Disturb a system from equilibrium and it will move to restore that equilibrium → One way to drive a reaction is to remove product Quantify with concentration dependence of △G and E.

Batteries Lead acid battery Dry cell, alkaline cell Rechargeable Ni-Cd battery To get higher voltages, stack up cells in series (e.g., car battery 6 × 2 V = 12 V)

Electrolysis

Driving non-spontaneous reactions by applying electrical energy The least unfavorable potential reaction goes first (there can be overlap) Overpotentials and concentrated reactants are used Quantify the amount of reaction -n, F, and number of moles

Peroxides and Superoxides
Peroxide: O ₂ ⁻ Superoxide: O ₂
$2H_2O_2(l,aq) \longrightarrow 2H_2O(l) + O_2(g)$ bottles have vented caps Autooxidation and disproportionation
In self-contained breathing apparatus:
Peroxide $2Na_2O_2(s) + 2CO_2(g) \longrightarrow 2Na_2CO_3(s) + O_2(g)$
Superoxide $4\text{KO}_2(s) + 2\text{H}_2\text{O}(g) \longrightarrow 3\text{O}_2(g) + 4\text{KOH}(s)$
$\operatorname{KOH}(s) + \operatorname{CO}_2(g) \longrightarrow \operatorname{KHCO}_3(s)$

Acid/Base Equilibria

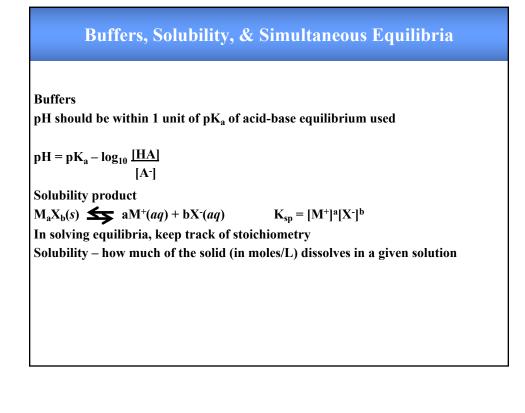
Acids and bases

$$HX(aq) \oiint H^+(aq) + X^-(aq) \qquad K_a = \frac{[H^+][X^-]}{[HX]}$$

$$X^{-}(aq) + H_2O(l) \implies HX(aq) + OH^{-}(aq) \quad K_b = \frac{[HX][OH^{-}]}{[X^{-}]}$$

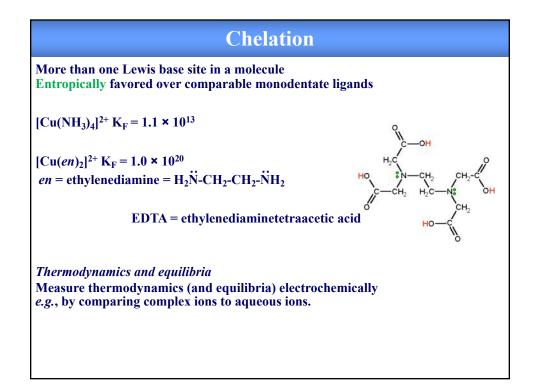
Table of initial and equilibrium conditions

Solve problems by following the amount of reaction

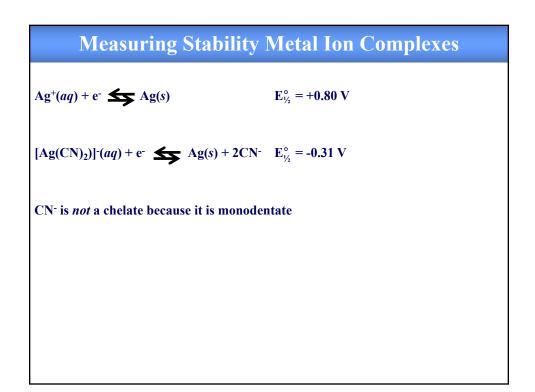

Make and *test* assumptions about relative significance of initial concentrations and amount of reaction (our limit here will be <3%)

Fractional dissociation and dilution

 $pH + pOH = pK_a + pK_b = 14$ $K_w = 10^{-14} = [H^+][OH^-] = K_aK_b$

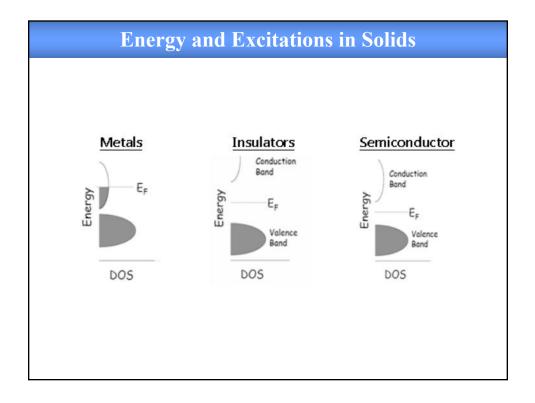

AmphoterismAmphoterism is the ability of a molecule to act
both as an acid and as a base.
This results in metal hydroxides which are soluble
in both acids and bases.Hydration:
$$Al^{3+}(aq) = Al(H_2O)_6^{3+}$$

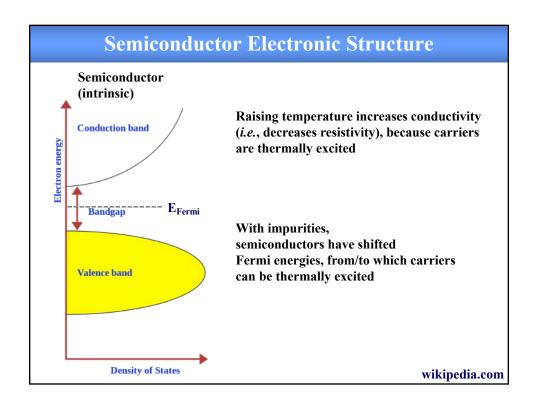
 $Al(OH)_3(s) + 3H_2O \leftrightarrows Al(OH)_3(OH_2)_3(s)$ In acid:
 $Al(OH)_3(OH_2)_3 + H^+ \leftrightarrows Al(OH)_2(OH_2)_4^+ (aq)$
Solubility increasesIn base:
 $Al(OH)_3(OH_2)_3 + OH^- \leftrightarrows Al(OH)_4(OH_2)_2^- (aq)$
 $+ H_2O$ Solubility increases

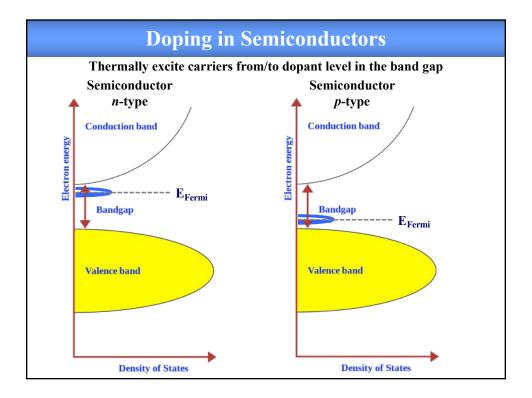

Polyprotic Acid Equilibria Polyprotic acid: >1 acidic proton For 0.1 M H₂S, what are the concentrations of H₂S, H⁺, HS⁻, and S²⁻? $H_2S(aq) \implies H^+(aq) + HS^-(aq)$ $K_{a1} = \frac{[H^+][HS^-]}{[H_2S]} = 1.0 \times 10^{-7}$ HS⁻(aq) \implies H⁺(aq) + S²⁻(aq) $K_{a2} = \frac{[H^+][S^{2-}]}{[HS^-]} = 1.3 \times 10^{-13}$ Table 1:H2S \mathbf{H}^+ HS-Init 0.1 $(10^{-7}) \sim 0$ 0 x $K_{a1} = \frac{[H^+][HS^-]}{[H_2S]} = \frac{x^2}{0.1 - x} \sim \frac{x^2}{0.1}$ Final **0.1-**x X Table 2: HS⁻ \mathbf{H}^+ S²⁻ 0 Init X Х $K_{a2} = \frac{[H^+][S^2]}{[HS^-]} = \frac{(x+y)v}{x(y)} \sim y$ Final х-у∼х x+y∼x У

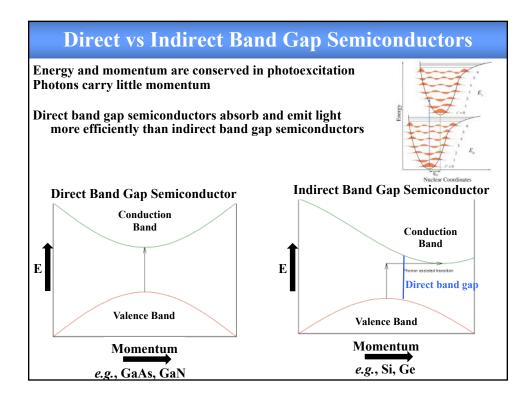
$$\begin{aligned} & \text{Metal Complex Stability} \\ & Cu(NH_3)_4^{2+} + 4H_2O \leftrightarrows Cu(OH_2)_4^{2+} + 4NH_3 \\ & Cu^{2+}(aq) = Cu(OH_2)_4^{2+} \\ & K = \frac{[Cu(OH_2)_4^{2+}][NH_3]^4}{[Cu(NH_3)_4^{2+}][H_2O]^4} \\ & \searrow = \text{constant} \\ & \text{Dissociation} \quad K_D = \frac{[Cu^{2+}][NH_3]^4}{[Cu(NH_3)_4^{2+}]} = 2 \ge 10^{-13} \\ & Cu(OH_2)_4^{2+} + 4NH_3 \leftrightarrows Cu(NH_3)_4^{2+} + 4H_2O \\ & \text{Formation} \quad K_F = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4} = 5 \ge 10^{12} \\ & K_D = \frac{1}{K_F} \end{aligned}$$

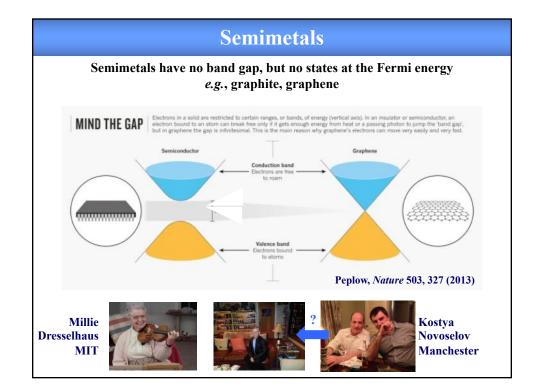
Metal Complexes
Coordination compounds
Lewis acid – Lewis base adducts
Important in enzymes, catalysis, metal/salt dissolution
Orbitals and oxidation state of central metal ion determine coordination.
Electronic excitation – absorption and emission
Lewis base ligands split electronic energies of metal ions – leading to color and spin
Lone pair electrons repel and stay farthest away (as compared to ligands)
Spin
High spin vs. low spin compounds
Compare crystal field splitting (Δ) to the spin pairing energy (P)
Spectrochemical series – relative ligand effect on Δ
Paramagnetic – having one of more unpaired spins
Colors
Complementary colors – if a color is absorbed, the absorbing material will appear as the complementary color
Red-green, orange-blue, yellow-violet
Other means of color: emission, interference






Energy and Excitations in Solids
<i>Metals</i> No band gap - HOMO, LUMO are at the same energy Electronic excitation is small <i>vs.</i> kT High electrical and thermal conductivity Conductivity <i>decreases</i> with increasing temperature because of electron scattering
Semiconductors and Insulators
Have a band gap between valence (lower) band and conduction (upper) band – electronic excitation is >kT This determines insulator vs. semiconductor
Direct band gap can be excited by photons (very little momentum) Indirect band gap cannot be photoexcited efficiently nor is emission efficient Electrons and "holes" can carry charge
Differentiate with magnetic field (Hall effect)
Energies of (dopant) states in the band gap determine conductivity and whether electrons or holes dominate current
Conductivity increases with increasing temperature because of thermal excitation of carriers
Semi-metals
No gap, but 0 density of states at the Fermi level


Kinetics
Rate laws Reaction order First-order reactions
Order and stoichiometry are <i>not</i> the same Clue to mechanism Reaction dynamics = kinetics + mechanism Location of reaction barrier determines effectiveness of translation vs. vibration at promoting reaction
Recall the mechanism and kinetics do <i>NOT</i> affect the thermodynamics (state functions) and equilibra
Reaction Order
Statistical/graphical analysis of kinetics
Catalysis
Lower barrier to accelerate reaction equilibration
Recall the mechanism and kinetics do NOT affect the thermodynamics (state functions) and equilibra
Enzymes are biological catalysts with greater specificity and control than synthetic catalysts


Posters
What did we learn from posters? Lots!
 What uid we learn from posters: Lots: 1D Materials – carbon nanotube growth 2D Materials – black phosphorus, graphene Batteries (Zn-air) Catalysis & green chemistry including catalytic converters Electronic nose (lung cancer detection) Indirect detection of neutrinos Mechanical transmission in electric cars Metal-organic frameworks (MOFs) for CO₂ capture and catalysis Molecular dynamics simulations (macromolecules) Neurodegenerative disease detection (synucleinopathies) Nuclear reactors (Th/fluorides) Optigenetics for neuroscience Protein structure Paramagnetic tags for nmr Raman detection in porous materials Redox flow electrochemical cells Solar cells (perovskites, black phosphorus) Supercapacitors
Triboelectric energy harvesters (wearables, blue energy) Two-photon microscopy Viruses – capsid assembly, coronavirus Wound-healing hydrogels

Energy and Excitations in Solids
Metals
No band gap - HOMO, LUMO are at the same energy
Electronic excitation is small vs. kT
High electrical and thermal conductivity
Conductivity <i>decreases</i> with increasing T, because of electron scattering
Semiconductors and Insulators
Have a band gap between valence (lower) band and conduction (upper) band – electronic excitation is >kT
This determines insulator vs. semiconductor
Direct band gap can be excited by photons (very little momentum)
Indirect band gap cannot be photoexcited efficiently
Electrons and "holes" can carry charge
Differentiate with magnetic field (Hall effect)
Energies of (dopant) states in the band gap determine conductivity and whether electrons or holes dominate current
Dopants in semiconductors
Elemental identity determines energy of dopant level
which then determines <i>p</i> - or <i>n</i> -type
Energy of dopant level <i>and</i> concentration determine conductivity of material more dopant atoms → higher conductivity
Do not form a "band" – serve as a source or sink for thermally excited electrons
Conductivity increases with increasing T, because of thermal excitation of carriers

Recap of Crystal Field Theory & Inorganic Complexes

Transition metal ions are Lewis acids \Rightarrow they accept electron pairs

Ligands are Lewis bases ⇒ molecules or ions which donate electron pairs

Ligands bonded to metal ions \Rightarrow metal complexes or coordination compounds

Coordination number: number of electron donor atoms attached to the metal Determines symmetry, splitting arrangement

Metal, oxidation state, ligands (spectrochemical series) determine splittings

High spin / low spin - compare Δ to P P < $\Delta \Rightarrow$ Low spin complexes

 $P > \Delta \Rightarrow$ High spin complexes

Color wheel & other sources of color

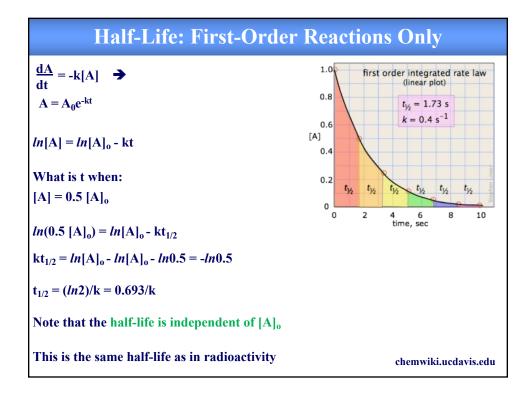
Chelates - entropy effects

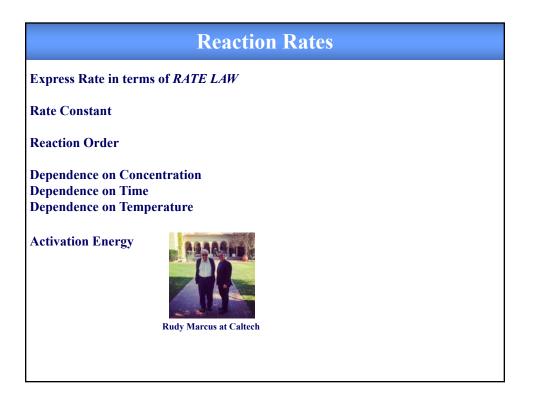
Recap of Energy and Excitations in Solids
Metals
No band gap - HOMO, LUMO are at the same energy
Electronic excitation is small vs. kT
High electrical and thermal conductivity
Conductivity <i>decreases</i> with increasing T, because of electron scattering
Semiconductors and Insulators
Have a band gap between valence (lower) band and conduction (upper) band – electronic excitation is >kT
This determines insulator vs. semiconductor
Direct band gap can be excited by photons (very little momentum)
Indirect band gap cannot be photoexcited efficiently
Electrons and "holes" can carry charge
Differentiate with magnetic field (Hall effect)
Energies of (dopant) states in the band gap determine conductivity and whether electrons or holes dominate current
Dopants in semiconductors
Elemental identity determines energy of dopant level
which then determines <i>p</i> - or <i>n</i> -type
Energy of dopant level <i>and</i> concentration determine conductivity of material more dopant atoms → higher conductivity
Do not form a "band" – serve as a source or sink for thermally excited electrons
Conductivity increases with increasing T, because of thermal excitation of carriers

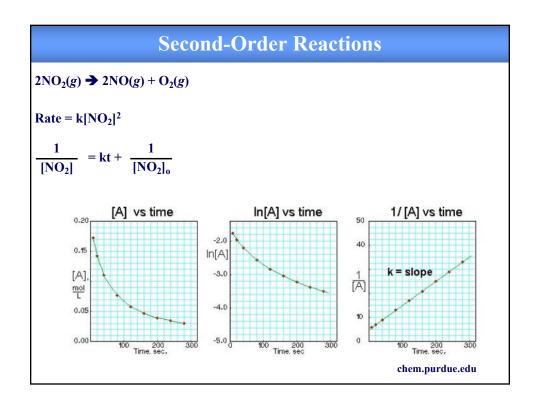
Energy-Level Diagrams +

Metals, semiconductors, insulators, semi-metals, doped semiconductors, direct & indirect band gap semiconductors, semi-insulating semiconductors, superconductors

Boltzmann distribution (vs T), Fermi distribution

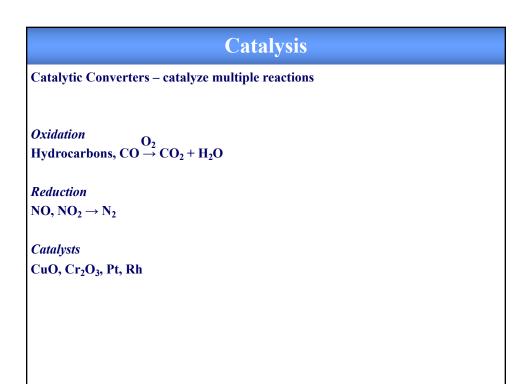

Photoexcitation, emission, fluorescence, photoionization, two-photon excitation, multiphoton excitation, Raman spectroscopy, stimulated emission, Jablonski diagram

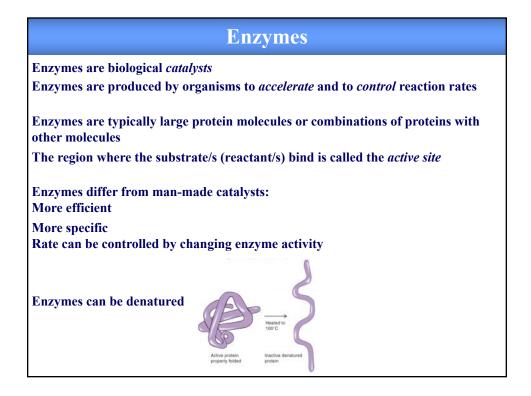

X-ray photoelectron spectroscopy, X-ray fluorescence, Auger spectroscopy

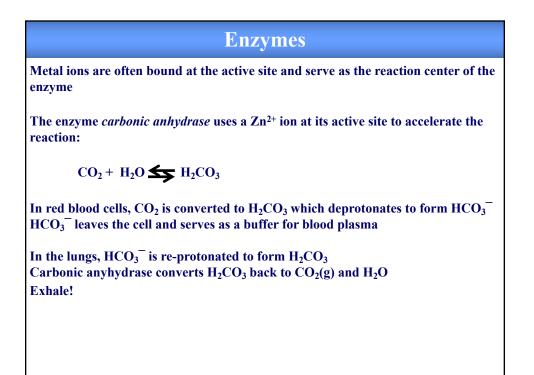

Reaction coordinate, activation energy, catalysis

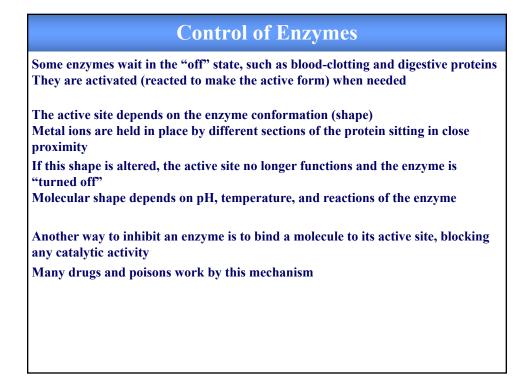
Conversion of energy units, temperature, frequency, photon wavelength, particle wavelength, magnetic field

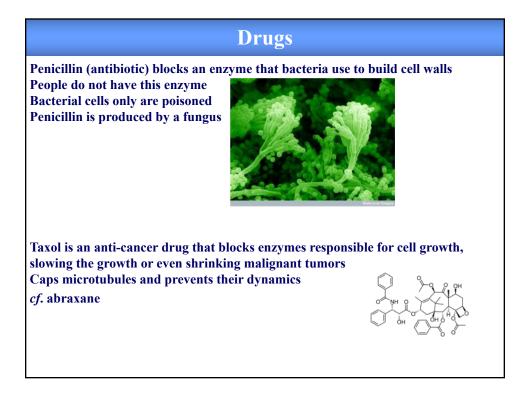
Fingerprint spectroscopies and methods

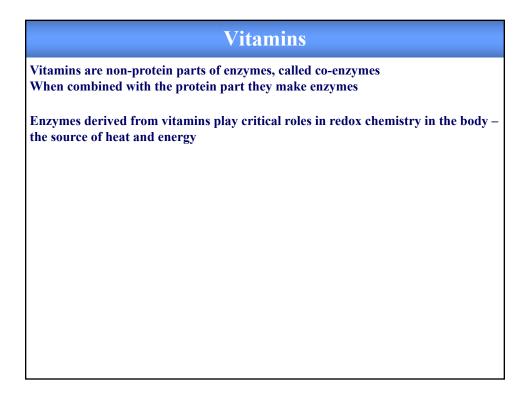





Rate-Limiting Step $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$ Rate = k[NO_2]^2Mechanism:
(Elementary Steps)
 $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$ Slow
 $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$ FastSlow step determines rate
"Bottleneck"1 = kt + 1


 $\frac{1}{[NO_2]} = kt + \frac{1}{[NO_2]_o}$






Recap of Lecture #25: Kinetics		
Rate laws – depend on slow elementary steps of reaction Reaction order – not the same as stoichiometry We covered first and second order reactions	UCL O'Zeniny & Rocaver, PHYSICAL CHEMISTRY SEMINAR	
Strategy: Linearize data by transformation – extract parameters like rate constant and activation energy		
Catalytic converter Complex mixture of supported catalysts Oxidizes CO and hydrocarbons, reduces NO _x	74–104 87±10	
Homogeneous catalysis – catalyst in solution of compounds in solution Heterogeneous catalysis – catalyst is in a different phase (usually solid) than reactants and products (usually gas or solution)		
Enzymes Biological catalysts		
Both <u>accelerate</u> and <u>control</u> reactions Control comes from reactions (post-translational modification), con Often have metal center(s) function as Lewis Acids for reagents/liga		



Recap of Lecture #27: Nuclear Chemistry

Balance nuclear reactions using Z and isotope mass

Nuclear Decay – energy scales in MeV

 α is a ⁴He nucleus – not very penetrating

Neutron-rich isotopes undergo β^{-} decays (.-1e) – more penetrating

Neutron-deficient isotopes undergo positron emission $({}_{1}\beta^{+})$ or electron capture Electron capture (from 1s orbital) is more likely for higher Z elements

Positrons are the anti-particles of electrons and annihilate with them, producing 2 γ rays that go in opposite directions ($\Delta E = \Delta mc^2$ & conservation of momentum)

y rays are produced when excited nuclei relax (photon emission), no change in Z or mass

Nuclear Stability

Unstable elements decay so as to move toward the band of stability Transuranium elements undergo a series of α decays Even proton and neutron numbers + closed shells favor stability

Radioactive Dating

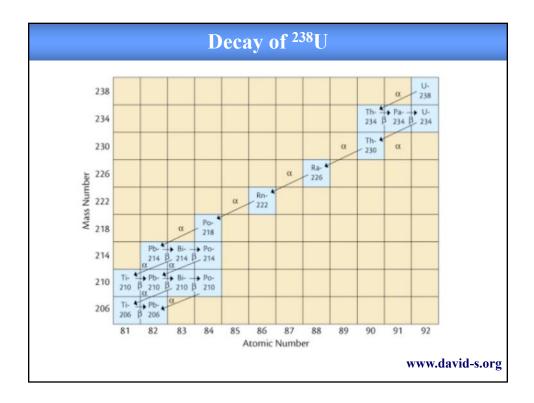
First-order (exponential) decay kinetics

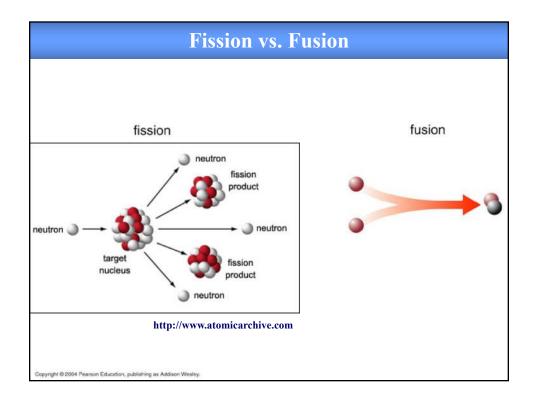
Measure elapsed time by following decay of an isotope

Example – ¹⁴C decay measures the time since respiration stopped (end of carbon uptake)

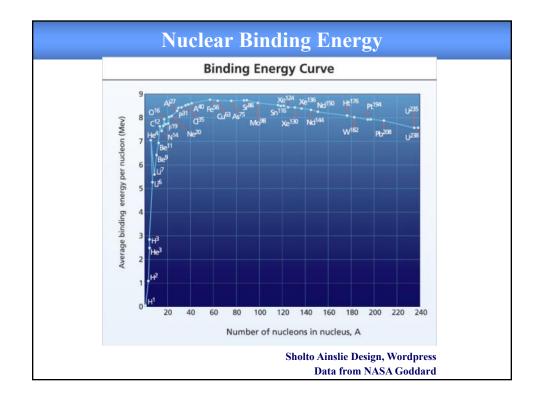
¹⁴C half-life of 5700 years, ²³⁸U half-life of 4.5x10⁹ years

Accessible ages must be on these scales

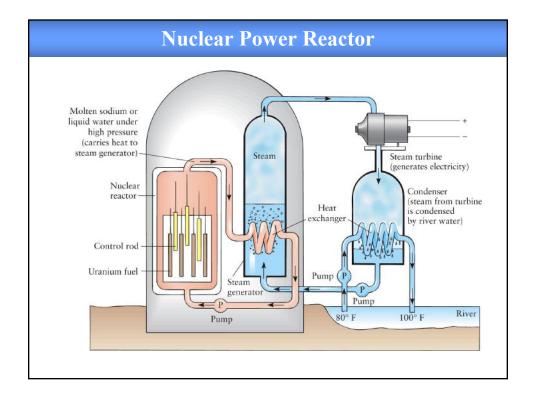

After *n* half-lives, $(\frac{1}{2})^n$ of original amount remains



Nuclear Chemistry: Decay towards Stability, cont.


Elements with atomic numbers greater than 84 undergo α -decay in order to reduce <u>both</u> the numbers of neutrons and protons:

e.g.
$${}^{235}_{92}U \rightarrow {}^{231}_{90}Th + {}^{4}_{2}He$$



Nuclear Binding Energy
$2^{1}_{1} p + 2^{1}_{0} n \longrightarrow {}^{4}_{2} He$
¹ p mass is 1.00728 amu ¹
¹ n mass is 1.00867 amu ⁰
⁴ He mass is 4.00150 amu ²
Mass defect = $2(1.00728) + 2(1.00867) - 4.00150 = 0.03040$ amu = 5.047×10^{-29} kg E = mc ² , really $\Delta E = \Delta mc^2$
$E = (5.047 \times 10^{-29} \text{ kg})(3 \times 10^8 \text{ m/sec})^2 = 4.543 \times 10^{-12} \text{ J/}^4\text{He}$
Binding E/nucleon = $4.543 \times 10^{-12} \text{ J/4} = 1.14 \times 10^{-12} \text{ J}$ for ⁴ He vs.
1.41×10 ⁻¹² J for ⁵⁶ Fe
1.22×10^{-12} J for $\frac{238}{29}$ U
For mass $> \sim 50-60^{92}$ amu nuclei: nuclear fission is exothermic
For mass < ~50-60 amu nuclei: nuclear fusion is exothermic

	Nuclear Chain Reactions: Fission
$ \begin{array}{c} 235U + 1n \\ 92 & 0 \end{array} $	$\Rightarrow \frac{137}{52} Te + \frac{97}{40} Zr + \frac{21}{0} n$ $\Rightarrow \frac{142}{56} Ba + \frac{91}{36} Kr + \frac{31}{0} n$
Chain reaction Small:	Most neutrons are lost, subcritical mass
Medium:	Constant rate of fission, critical mass Nuclear reactor <i>e.g.</i> , 3% ²³⁵ U in ²³⁸ U – UO ₂ pellets in metal rods Heat liquid to drive turbines – need lots of cooling water (see also breeder reactors)
Large:	Increasing rate of fission, supercritical mass Bomb

Nuclear Chain Reactions: Fusion"Chemistry of the stars"
The sun contains 73% H and 26% He ${}^{1}H + {}^{1}H \rightarrow {}^{2}H + {}^{0}\beta$ ${}^{1}H + {}^{2}H \rightarrow {}^{2}H + {}^{0}\beta$ ${}^{1}H + {}^{2}H \rightarrow {}^{3}He$ ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H$ ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H$ ${}^{3}He + {}^{1}H \rightarrow {}^{4}He + {}^{0}\beta$ Initiation of these reactions requires temperatures of 4×10^{7} K (not currently obtainable on Earth on a stable basis)

Recap of Lecture #28: Fission and Fusion

Mass Defect $\Delta E = \Delta mc^2$ Energy scales are much higher than chemical energies (KNOW THEM!) Exothermic Nuclear Reactions Rate stability as mass deficit per nucleon. Binding energy per nucleon peaks at ⁵⁶Fe Lighter elements can undergo fusion exothermically Heavier elements can undergo fission exothermically Nuclear Chain Reactions More neutrons produced than absorbed Subcritical mass – not sustained Critical mass - self-sustaining reaction Supercritical mass - increasing reaction rate - bomb Nuclear Reactors Fission reactors – most common Heat water to drive steam turbines Use moderators to determine neutron capture rate and thus reaction rate Breeder reactors produce more fuel than they consume Fusion reactors do not exist due to difficulty in sustaining high temperatures required

Energy-Level Diagrams +

Metals, semiconductors, insulators, semi-metals, doped semiconductors, direct & indirect band gap semiconductors, semi-insulating semiconductors, superconductors

Boltzmann distribution (vs T), Fermi distribution

Photoexcitation, emission, fluorescence, photoionization, two-photon excitation, multiphoton excitation, Raman spectroscopy, stimulated emission, Jablonski diagram

X-ray photoelectron spectroscopy, X-ray fluorescence, Auger spectroscopy

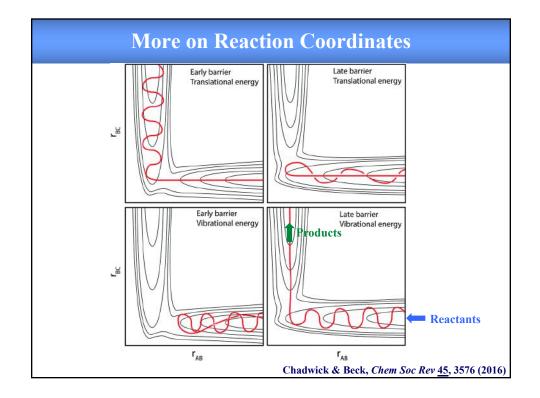
Reaction coordinate, activation energy, catalysis

Conversion of energy units, temperature, frequency, photon wavelength, particle wavelength, magnetic field

Fingerprint spectroscopies and methods

Thermodynamics and Equilibria

Thermodynamics, free energy (ΔG), enthalpy (ΔH), entropy (ΔS), cell potential (E) Use intuition, rules of forming stronger bonds (ΔH<0) Entropy changes – gas/solution/liquid/solid Know sign conventions Relate thermodynamics, equilibrium constants, and electrochemistry (*vs* kinetics)

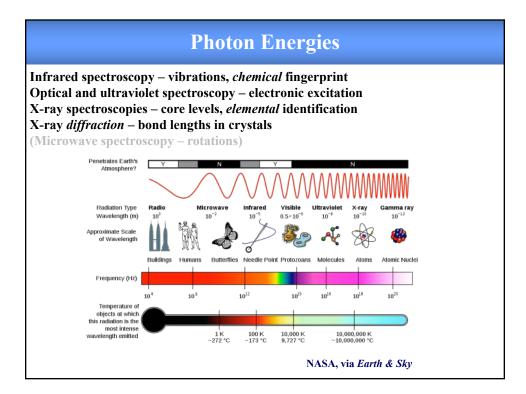

Phase transitions Acids & bases, buffers Solubility Complex formation – Lewis acid – Lewis base interactions (including enzymes)

Periodic trends

Interaction strengths Chemical bonds – covalent, ionic, metallic Weaker interactions – hydrogen bonding, ion-dipole, dipole-dipole,

Electrochemistry – LAnOx & GRedCat Oxidation states, half reactions, spontaneous & non-spontaneous reactions Batteries, electrolysis

Kinetics
Rate laws Reaction order Order and stoichiometry are <i>not</i> the same Clue to mechanism Reaction dynamics = kinetics + mechanism Location of reaction barrier determines effectiveness of translation vs. vibration at promoting reaction
Recall the mechanism and kinetics do <i>NOT</i> affect the thermodynamics (state functions) and equilibra <i>Reaction Order</i> Statistical/graphical analysis of kinetics <i>Catalysis</i>
Lower barrier to accelerate reaction equilibration Recall the mechanism and kinetics do NOT affect the thermodynamics (state functions) and equilibra Enzymes are biological catalysts with greater specificity and control than synthetic
catalysts



Materials
Semiconductors
Conduction and valence bands
Band gap, Fermi level
Density of states
<i>n</i> - and <i>p</i> -type, semi-insulating
Direct and indirect band gaps
Reactions of Si to make: insulators, metals, and to add dopants
Conductivity increases with increasing temperature
thermal excitation to conduction band or from valence band
Insulators
Conductivity increases with increasing temperature
Energy level diagram looks like semiconductor but bigger gap (compare to kT)
Metals
No band gap
Conductivity decreases with increasing temperature
Semi-Metals

Nuclear Chemistry

Decays - α , β -, β +, γ , electron capture **Balance decay reactions** Band of stability – also, use periodic table (what are average/common masses?) Nuclear Stability Unstable elements decay so as to move toward the band of stability Transuranium elements undergo a series of α decays Neutron-rich isotopes undergo β⁻ decays Neutron-deficient isotopes undergo positron emission or electron capture Even proton and neutron numbers + closed shells favor stability Radioactive Dating First-order (exponential) decay kinetics Measure elapsed time by following decay of an isotope Example – ¹⁴C decay measures the time since respiration stopped (end of carbon uptake) ¹⁴C half-life of 5700 years, ²³⁸U half-life of 4.5x10⁹ years Accessible ages must be on these scales After *n* half-lives, (1/2)ⁿ of original amount remains Nuclear Energy Mass defect, $\Delta E = \Delta mc^2$ – binding energy per nucleon peaks at ⁵⁶Fe Fission and chain reactions, fusion

Chemical Measurements
Infrared spectroscopy – vibrations, <i>chemical</i> fingerprint (isotopes) Optical and ultraviolet spectroscopy – electronic excitation X-ray spectroscopies – core levels, <i>elemental</i> identification
Fluorescence
Mass spectrometry Fragmentation, isotopes
Electrochemical – thermodynamics Balance cells and half-cells, count electrons Quantitative Important in energy harvesting and storage
X-ray diffraction – spacings in and between molecules
Microscopies – real-space measurements
Know energy scales, both for photons and interaction strengths

